A008574 a(0) = 1, thereafter a(n) = 4n.
1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0
Examples
From _Omar E. Pol_, Aug 20 2011 (Start): Illustration of initial terms as perimeters of squares (cf. Perry's comment above): . o o o o o o . o o o o o o o . o o o o o o o o . o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o . . 1 4 8 12 16 20 (End)
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Joerg Arndt, The 3.4.6.4 net
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Pierre de la Harpe, On the prehistory of growth of groups, arXiv:2106.02499 [math.GR], 2021.
- Jean-Guillaume Eon, Symmetry and Topology: The 11 Uninodal Planar Nets Revisited, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 7.
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019.
- Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.2 p. 20.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
- D. Hansel et al., Analytical properties of the anisotropic cubic Ising model, J. Stat. Phys., 48 (1987), 69-80.
- Tom Karzes, Tiling Coordination Sequences
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Reticular Chemistry Structure Resource, sql and htb
- Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1.
- N. J. A. Sloane, Illustration of points in shells 0 through 12 of the 3.4.6.4 planar net (see Comments for discussion)
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Convolution square of A040000.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
Programs
-
Haskell
a008574 0 = 1; a008574 n = 4 * n a008574_list = 1 : [4, 8 ..] -- Reinhard Zumkeller, Apr 16 2015
-
Mathematica
f[0] = 1; f[n_] := 4 n; Array[f, 59, 0] (* or *) CoefficientList[ Series[(1 + x)^2/(1 - x)^2, {x, 0, 58}], x] (* Robert G. Wilson v, Jan 02 2011 *) Join[{1},Range[4,232,4]] (* Harvey P. Dale, Aug 19 2011 *) a[ n_] := 4 n + Boole[n == 0]; (* Michael Somos, Jan 07 2019 *)
-
PARI
{a(n) = 4*n + !n}; /* Michael Somos, Apr 16 2007 */
Formula
Binomial transform is A000337 (dropping the 0 there). - Paul Barry, Jul 21 2003
Euler transform of length 2 sequence [4, -2]. - Michael Somos, Apr 16 2007
G.f.: ((1 + x) / (1 - x))^2. E.g.f.: 1 + 4*x*exp(x). - Michael Somos, Apr 16 2007
a(-n) = -a(n) unless n = 0. - Michael Somos, Apr 16 2007
G.f.: exp(4*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = a(n-1) + 4, n > 1. - Vincenzo Librandi, Dec 31 2010
a(n) = 4*n = A008586(n), n >= 1. - Tom Karzes, Apr 01 2020
Comments