A008620 Positive integers repeated three times.
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26
Offset: 0
References
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 12 Exer. 7
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
- F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, 1977, Chapter 19, Eq. (14), p. 601 and Theorem 3c, p. 602; also Problem 5 p. 620.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- K. Anders, Counting Non-Standard Binary Representations, JIS vol 19 (2016) #16.3.3 example 1.
- E. R. Berlekamp, F. J. MacWilliams and N. J. A. Sloane, Gleason's Theorem on Self-Dual Codes, IEEE Trans. Information Theory, IT-18 (1972), 409-414.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 210
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 449
- F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 802, col. 2, foot.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Jan Snellman and Michael Paulsen, Enumeration of Concave Integer Partitions, J. Integer Seqs., Vol. 7, 2004.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Haskell
a008620 = (+ 1) . (`div` 3) a008620_list = concatMap (replicate 3) [1..] -- Reinhard Zumkeller, Feb 19 2013, Apr 16 2012, Sep 25 2011
-
Magma
[Floor(n/3)+1: n in [0..80]]; // Vincenzo Librandi, Aug 16 2011
-
Magma
a := func< n | Dimension( ModularForms( Gamma1(3), n))>; /* Michael Somos, Apr 01 2015 */
-
Maple
A008620:=n->floor(n/3)+1; seq(A008620(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013
-
Mathematica
Table[Floor[n/3] + 1, {n, 0, 90}] (* Stefan Steinerberger, Apr 02 2006 *) Table[{n, n, n}, {n, 30}] // Flatten (* Harvey P. Dale, Jan 15 2017 *) Ceiling[Range[20]/3] (* Eric W. Weisstein, Aug 12 2023 *) Table[Ceiling[n/3], {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *) Table[(1 + n - Cos[2 n Pi/3] + Sin[2 n Pi/3]/Sqrt[3])/3, {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *) Table[(n - ChebyshevU[n, -1/2] + 1)/3, {n, 20}] (* Eric W. Weisstein, Aug 12 2023 *) LinearRecurrence[{1, 0, 1, -1}, {1, 1, 1, 2}, 20] (* Eric W. Weisstein, Aug 12 2023 *) CoefficientList[Series[1/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 12 2023 *)
-
PARI
a(n)=n\3+1
-
Sage
def a(n) : return( dimension_modular_forms( Gamma1(3), n) ); # Michael Somos, Apr 01 2015
Formula
a(n) = floor(n/3) + 1.
a(n) = A010766(n+3, 3).
G.f.: 1/((1-x)*(1-x^3)) = 1/((1-x)^2*(1+x+x^2)).
From Paul Barry, May 19 2004: (Start)
a(n) = Sum_{k=0..n} (k+1)*2*sqrt(3)*cos(2*Pi*(n-k)/3 + Pi/6)/3. (End)
The g.f. is 1/(1-V_trefoil(x)), where V_trefoil is the Jones polynomial of the trefoil knot. - Paul Barry, Oct 08 2004
a(2n) = A004396(n+1). - Philippe Deléham, Dec 14 2006
a(n) = ceiling(n/3), n>=1. - Mohammad K. Azarian, May 22 2007
E.g.f.: exp(x)*(2 + x)/3 + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 17 2022
Comments