A008642 Quarter-squares repeated.
1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 12, 12, 16, 16, 20, 20, 25, 25, 30, 30, 36, 36, 42, 42, 49, 49, 56, 56, 64, 64, 72, 72, 81, 81, 90, 90, 100, 100, 110, 110, 121, 121, 132, 132, 144, 144, 156, 156, 169, 169, 182, 182, 196, 196, 210, 210, 225, 225
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 112, D(n).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson, Asymptotic normality of the major index on standard tableaux, arXiv:1905.00975 [math.CO], 2019.
- Ran Pan, Exercise U, Project P.
- Harold N. Ward, A Normal Graph Algebra, arXiv:2201.00389 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Crossrefs
Programs
-
Magma
[Floor(((n+1)*((-1)^n+n+6)+9)/16): n in [0..70]]; // Vincenzo Librandi, Apr 02 2014
-
Maple
seq((7/8+(-1)^k/8 + k + k^2/4)$2, k=0..100); # Robert Israel, Oct 08 2015
-
Mathematica
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 02 2014 *) LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,2,2,4,4,6}, 70] (* Harvey P. Dale, Jun 03 2015 *) Table[Floor[((n + 1) ((-1)^n + n + 6) + 9)/16], {n, 0, 70}] (* Michael De Vlieger, Aug 14 2016 *)
-
PARI
Vec(1/((1-x)*(1-x^2)*(1-x^4)) + O(x^70)) \\ Michel Marcus, Mar 31 2014
-
PARI
vector(70, n, n--; floor(((n+1)*((-1)^n+n+6)+9)/16)) \\ Altug Alkan, Oct 08 2015
-
Sage
[floor(floor(n/2+2)^2/2)/2 for n in (0..70)] # Bruno Berselli, Mar 03 2016
Formula
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)).
a(n) = (2*n^2 + 14*n + 21 + (2*n + 7)*(-1)^n)/32 + ((1 + (-1)^n)/2 - (1 - (-1)^n)*i/2)*i^n/8, with i = sqrt(-1).
a(n) = floor(((n+1)*((-1)^n+n+6)+9)/16). - Tani Akinari, Jun 16 2013
a(n) = Sum_{i=1..floor((n+6)/2)} floor((n+6-2*i-(n mod 2))/4). - Wesley Ivan Hurt, Mar 31 2014
a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=4, a(6)=6; for n>6, a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7). - Harvey P. Dale, Jun 03 2015
a(n) = floor(floor(n/2+2)^2/4) = floor(floor(n/2+2)^2/2)/2. - Bruno Berselli, Mar 03 2016
E.g.f.: ((14 + 7*x + x^2)*cosh(x) + 2*(cos(x) + sin(x)) + (7 + 9*x + x^2)*sinh(x))/16. - Stefano Spezia, Mar 05 2023
a(n) = floor((n + 4)/4)*floor((n + 6)/4). - Ridouane Oudra, Apr 01 2023
Comments