A167809 Number of admissible bases in the postage stamp problem for n denominations and h = 2 stamps.
1, 2, 5, 17, 65, 292, 1434, 7875, 47098, 305226, 2122983, 15752080, 124015310, 1031857395, 9041908204, 83186138212, 801235247145, 8059220936672, 84463182889321
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, C12.
Links
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- J. Kohonen, A meet-in-the-middle algorithm for finding extremal restricted additive 2-bases, arXiv preprint arXiv:1403.5945 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.6.8.
- J. Kohonen, Early Pruning in the Restricted Postage Stamp Problem, arXiv preprint arXiv:1503.03416 [math.NT], 2015.
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582.
Crossrefs
Extensions
a(17) from simple depth-first search by Jukka Kohonen, Jun 16 2016
a(18)-a(19) from depth-first search by Jukka Kohonen, Jul 30 2016
Comments