A024235
Expansion of e.g.f. tan(x)*sin(x)/2 (even powers only).
Original entry on oeis.org
0, 1, 2, 31, 692, 25261, 1351382, 99680491, 9695756072, 1202439837721, 185185594118762, 34674437196568951, 7757267081778543452, 2043536254646561946181, 626129820701814932734142, 220771946624511552276841411, 88759695789769644718332394832
Offset: 0
tan(x)*sin(x)/2 = 1/2*x^2 + 1/12*x^4 + 31/720*x^6 + 173/10080*x^8 + ...
From _Peter Bala_, Nov 10 2016: (Start)
Asymptotic expansion at N = 100000.
The truncated series 2*Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) = 0.78539816339744(9)309615660(6)4581987(603) 104929(1657)84377... to 50 digits. The bracketed digits show where this decimal expansion differs from that of Pi/4. The numbers -1, 2, -31, 692 must be added to the bracketed numbers to give the correct decimal expansion to 50 digits: Pi/4 = 0.78539816339744(8)309615660(8)4581987(572)104929(2349)84377.... (End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..50
- J. M. Borwein, P. B. Borwein, K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
- Eric Weisstein's World of Mathematics, Euler Polynomial.
-
A000364 := proc(n)
abs(euler(2*n));
end proc:
seq(1/2*(A000364(n) - (-1)^n), n = 0..20); # Peter Bala, Nov 10 2016
-
With[{nn=30},Take[CoefficientList[Series[Tan[x]*Sin[x]/2,{x,0,nn}], x]Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 27 2012 *)
Extended and signs tested Mar 15 1997.
A099023
Diagonal of Euler-Seidel matrix with start sequence e.g.f. 1-tanh(x).
Original entry on oeis.org
1, -1, 4, -46, 1024, -36976, 1965664, -144361456, 13997185024, -1731678144256, 266182076161024, -49763143319190016, 11118629668610842624, -2925890822304510631936, 895658946905031792553984
Offset: 0
-
A099023List[n_] := Module[{e, dim, m, k}, dim = 2 n; e[0, 0] = 1; For[m = 1, m <= dim - 1, m++, If[EvenQ[m], e[m, 0] = 1; For[k = m - 1, k >= -1, k--, e[k, m - k] = e[k + 1, m - k - 1] - e[k, m - k - 1]], e[0, m] = 1; For[k = 1, k <= m + 1, k++, e[k, m - k] = e[k - 1, m - k + 1] + e[k - 1, m - k]]]]; Table[e[k, k], {k, 0, (dim + 1)/2 - 1}]];
A099023List[15] (* Jean-François Alcover, Jun 11 2019, after Peter Luschny *)
-
# Variant of an algorithm of L. Seidel (1877).
def A099023_list(n) :
dim = 2*n; E = matrix(ZZ, dim); E[0,0] = 1
for m in (1..dim-1) :
if m % 2 == 0 :
E[m,0] = 1;
for k in range(m-1,-1,-1) :
E[k,m-k] = E[k+1,m-k-1] - E[k,m-k-1]
else :
E[0,m] = 1;
for k in range(1,m+1,1) :
E[k,m-k] = E[k-1,m-k+1] + E[k-1,m-k]
return [E[k,k] for k in range((dim+1)//2)]
# Peter Luschny, Jul 14 2012
A029582
E.g.f. sin(x) + cos(x) + tan(x).
Original entry on oeis.org
1, 2, -1, 1, 1, 17, -1, 271, 1, 7937, -1, 353791, 1, 22368257, -1, 1903757311, 1, 209865342977, -1, 29088885112831, 1, 4951498053124097, -1, 1015423886506852351, 1, 246921480190207983617, -1, 70251601603943959887871, 1, 23119184187809597841473537
Offset: 0
-
nn = 30; Range[0, nn]! CoefficientList[Series[Tan[x] + Sin[x] + Cos[x], {x, 0, nn}], x] (* T. D. Noe, Jul 16 2012 *)
-
# Variant of an algorithm of L. Seidel (1877).
def A029582_list(n) :
dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
for m in (1..dim-1) :
if m % 2 == 0 :
E[m, 0] = 1;
for k in range(m-1, -1, -1) :
E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
else :
E[0, m] = 1;
for k in range(1, m+1, 1) :
E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
return [(-1)^(k//2)*E[k,0] for k in range(dim)]
A029582_list(15) # Peter Luschny, Jul 14 2012
A296462
Expansion of e.g.f. arcsin(x)*arctanh(x) (even powers only).
Original entry on oeis.org
0, 2, 12, 238, 9912, 708282, 77392260, 12002011110, 2507167177200, 678724656721650, 231129344455890300, 96694934804540934750, 48752132066414189721000, 29154453671147281799726250, 20403607225475633039372992500, 16520371586328834323725749873750, 15322889489994265975004588078700000
Offset: 0
arcsin(x)*arctanh(x) = 2*x^2/2! + 12*x^4/4! + 238*x^6/6! + 9912*x^8/8! + 708282*x^10/10! + ...
-
nmax = 16; Table[(CoefficientList[Series[ArcSin[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 16; Table[(CoefficientList[Series[I (Log[1 - x] - Log[1 + x]) Log[I x + Sqrt[1 - x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296463
Expansion of e.g.f. arcsinh(x)*arctanh(x) (even powers only).
Original entry on oeis.org
0, 2, 4, 158, 3624, 427482, 29665260, 6948032310, 991515848400, 383952670412850, 93532380775766100, 53913667654307868750, 20087427376748637675000, 16096655588343149442026250, 8531309209053208518037597500, 9057367559484733295974741323750, 6486329752640392315697926589700000
Offset: 0
arcsinh(x)*arctanh(x) = 2*x^2/2! + 4*x^4/4! + 158*x^6/6! + 3624*x^8/8! + 427482*x^10/10! + ..
-
nmax = 16; Table[(CoefficientList[Series[ArcSinh[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 16; Table[(CoefficientList[Series[(Log[1 + x] - Log[1 - x]) Log[x + Sqrt[1 + x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Showing 1-5 of 5 results.
Comments