cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000657 Median Euler numbers (the middle numbers of Arnold's shuttle triangle).

Original entry on oeis.org

1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0

Views

Author

Keywords

Comments

Also central terms of the triangle in A008280. - Reinhard Zumkeller, Nov 01 2013
Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 1, 4, 1, 7, 4, 1, 7, 4, 1, 7, ...] with an apparent period [4, 1, 7] of length 3 = phi(9)/2 beginning at a(2). - Peter Bala, May 08 2023

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

Cf. A084938, A002832. For a signed version see A099023.
Related polynomials in A098277.
A diagonal of A323834.
Cf. A005799.

Programs

  • Haskell
    a000657 n = a008280 (2 * n) n  -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
  • Mathematica
    max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
    T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
  • Maxima
    a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000657_list(n) :
        R = []; A = {-1:0, 0:1}
        k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) :
                Am += A[k]; A[k] = Am; k += e
            if e < 0 :
                R.append(A[0])
        return R
    A000657_list(30)  # Peter Luschny, Apr 02 2012
    

Formula

Row sums of triangle, read by rows, [0, 1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 2, 6, 5, 11, 8, 16, 11, 21, 14, ...] where DELTA is Deléham's operator defined in A084938.
G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1x/(1-1*3x/(1-2*5x/(1-2*7x/(1-3*9x/...))))). - Ralf Stephan, Sep 09 2004
G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+4*k+1) - x^2*(k+1)^2*(4*k+1)*(4*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013
G.f.: G(0)/(1-x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 - x*(8*k^2+4*k+1))*(1 - x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014
a(n) = (-1)^(n)*Sum_{k=0..n} C(n,k)*Euler(n+k). - Vladimir Kruchinin, Apr 06 2015
a(n) ~ 2^(4*n+5/2) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Apr 06 2015
Conjectural e.g.f. as a continued fraction: 1/(1 - (1 - exp(-2*t))/(2 - (1 - exp(-4*t))/(1 - (1 - exp(-6*t))/(2 - (1 - exp(-8*t))/(1 - ... )))) = 1 + t + 4*t^2/2! + 46*t^3/3! + .... Cf. A005799. - Peter Bala, Dec 26 2019

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
Corrected by Sean A. Irvine, Dec 22 2010

A163982 Real part of the coefficient [x^n] of the expansion of (1+i)/(1-i*exp(x)) - 1 multiplied by 2*n!, where i is the imaginary unit.

Original entry on oeis.org

-2, -1, 1, 2, -5, -16, 61, 272, -1385, -7936, 50521, 353792, -2702765, -22368256, 199360981, 1903757312, -19391512145, -209865342976, 2404879675441, 29088885112832, -370371188237525, -4951498053124096, 69348874393137901
Offset: 0

Views

Author

Roger L. Bagula, Aug 07 2009

Keywords

Comments

The sequence is a signed variant of A163747 and starts with a two instead of a zero.
From Paul Curtz, Mar 20 2013: (Start)
-a(n) and successive differences are:
2, 1, -1, -2, 5, 16, -61, -272;
-1, -2, -1, 7, 11, -77, -211, 1657, ...
-1, 1, 8, 4, -88, -134, 1868, 4894, ...
2, 7, -4, -92, -46, -46, 2002, 3026, ...
5, -11, -88, 46, 2048, 1024, -72928, ...
-16, -77, 134, 2002, -1024, -73952, -36976, ...
-61, 211, 1868, -3026, -72928, ...
272, 1657, -4894, -69902, ...
This is an autosequence: The inverse binomial transform (left column of the array of differences) is the signed sequence. The main diagonal 2, -2, 8, -92, ... doubles the entries of the first upper diagonal 1, -1, 4, -46, ... = A099023(n).
Sum of the antidiagonals: 2, 0, -4, 0, 32, ... = 2*A155585(n+1). (End)

Crossrefs

Cf. A163747.

Programs

  • Maple
    A163982 := n -> -2^n*(euler(n,1/2)+euler(n,1)): # Peter Luschny, Nov 25 2010
    A163982 := proc(n)
        (1+I)/(1-I*exp(x))-1 ;
        coeftayl(%,x=0,n) ;
        Re(%*2*n!) ;
    end proc; # R. J. Mathar, Mar 26 2013
  • Mathematica
    f[t_] = (1 + I)/(1 - I*Exp[t]) - 1; Table[Re[2*n!*SeriesCoefficient[Series[f[t], {t, 0, 30}], n]], {n, 0, 30}]
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 + x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 / g[k+1]); gf = -2 - x/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jan 22 2015, after Sergei N. Gladkovskii *)
    With[{nn = 50}, CoefficientList[Series[(-2)*Exp[t/2]*Cosh[t/2]/Cosh[t], {t, 0, nn}], t]*Range[0, nn]!] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    t='t+O('t^10); Vec(serlaplace((-2)*exp(x/2)*cosh(x/2)/cosh(x))) \\ G. C. Greubel, Aug 24 2017

Formula

Let ((1 + i)/(1 - i*exp(t)) - 1) = a(n) + I*b(n); abs(a(n)) = abs(b(n)).
a(n) = -2^n*(E_{n}(1/2) + E_{n}(1)), E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
E.g.f.: -(1/cosh(x) + tanh(x)) - 1. - Sergei N. Gladkovskii, Dec 11 2013
G.f.: -2 - x/W(0), where W(k) = 1 + x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 /W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2015
E.g.f.: (-2)*exp(x/2)*cosh(x/2)/cosh(x). - G. C. Greubel, Aug 24 2017

A009744 Expansion of e.g.f. tan(x)*sin(x) (even powers only).

Original entry on oeis.org

0, 2, 4, 62, 1384, 50522, 2702764, 199360982, 19391512144, 2404879675442, 370371188237524, 69348874393137902, 15514534163557086904, 4087072509293123892362, 1252259641403629865468284, 441543893249023104553682822, 177519391579539289436664789664
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq((2*i)!*coeff(series(tan(x)*sin(x),x,30),x,2*i),i=0..14); # Peter Luschny, Jul 14 2012
  • Mathematica
    nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*Sin[x], {x, 0, nn}], x]; Take[t, {1, nn, 2}] (* T. D. Noe, Jul 15 2012 *)
  • PARI
    x='x+O('x^50); v=Vec(serlaplace(tan(x)*sin(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Mar 04 2018
  • Sage
    # Variant of an algorithm of L. Seidel (1877) with a(0) = 1.
    def A009744_list(n) :
        dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
        for m in (1..dim-1) :
            if m % 2 == 0 :
                E[m, 0] = 1;
                for k in range(m-1, -1, -1) :
                    E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
            else :
                E[0, m] = 1;
                for k in range(1, m+1, 1) :
                    E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
        return [(-1)^(k//2)*E[0,k] for k in range(dim) if is_even(k)]
    A009744_list(14)  # Peter Luschny, Jul 14 2012
    

Formula

G.f.: 1/G(0) - 1/(1+x) where G(k) = 1 - x*(2*k+1)^2/(1 - x*(2*k+2)^2/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013
G.f.: 1/G(0) - 1/(1+x) where G(k) = 1 - x*(k+1)^2/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
a(n) ~ (2*n)! * 4^(n+1) / Pi^(2*n+1). - Vaclav Kotesovec, Jan 24 2015
Conjectural o.g.f.: Sum_{n >= 0} 4*x/2^n * Sum_{k = 0..n} (-1)^k*(k+1)*binomial(n,k)/( (1 + x*(2*k + 1)^2)*(1 + x*(2*k + 3)^2) ) = 2*x + 4*x^2 + 62*x^3 + 1384*x^4 + .... - Peter Bala, Mar 03 2015
From Peter Luschny, Jun 13 2021: (Start)
a(n) = (-1)^n*(Euler(2*n) - 1).
a(n) ~ 4^(2*n + 3/2)*exp(1/(24*n) - 2*n)*(n/Pi)^(2*n + 1/2). (End)

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.

Original entry on oeis.org

1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0

Views

Author

Paul Curtz, Mar 08 2014

Keywords

Examples

			The triangle T(n,k) begins:
                      1
                    0   1
                 -1  -1   0
                0  -1  -2  -2
              5   5   4   2   0
             ...
The array read as a table, A(n,k) = T(n+k, k), starts:
     1,    1,    0,   -2,    0,   16,    0, -272,    0, ...
     0,   -1,   -2,    2,   16,  -16, -272,  272, ...
    -1,   -1,    4,   14,  -32, -256,  544, ...
     0,    5,   10,  -46, -224,  800, ...
     5,    5,  -56, -178, 1024, ...
     0,  -61, -122, 1202, ...
   -61,  -61, 1324, ...
     0, 1385, ...
  1385, ...
  ...
For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
		

Crossrefs

Unsigned version is A008280.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, m_] /; nJean-François Alcover, Dec 30 2014 *)
  • Maxima
    T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* Vladimir Kruchinin, Apr 06 2015 */
    
  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

a(n) = A057077(n)*A008280(n) by rows.
a(n) is the increasing antidiagonals of the difference table of A155585(n).
Central column of triangle: A099023(n).
Right main diagonal of triangle: A155585(n) (see A009006(n)).
Left main diagonal of triangle: A122045(n).
T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - Vladimir Kruchinin, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]
T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - Petros Hadjicostas, Feb 21 2021

A029582 E.g.f. sin(x) + cos(x) + tan(x).

Original entry on oeis.org

1, 2, -1, 1, 1, 17, -1, 271, 1, 7937, -1, 353791, 1, 22368257, -1, 1903757311, 1, 209865342977, -1, 29088885112831, 1, 4951498053124097, -1, 1015423886506852351, 1, 246921480190207983617, -1, 70251601603943959887871, 1, 23119184187809597841473537
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 30; Range[0, nn]! CoefficientList[Series[Tan[x] + Sin[x] + Cos[x], {x, 0, nn}], x] (* T. D. Noe, Jul 16 2012 *)
  • Sage
    # Variant of an algorithm of L. Seidel (1877).
    def A029582_list(n) :
        dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
        for m in (1..dim-1) :
            if m % 2 == 0 :
                E[m, 0] = 1;
                for k in range(m-1, -1, -1) :
                    E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
            else :
                E[0, m] = 1;
                for k in range(1, m+1, 1) :
                    E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
        return [(-1)^(k//2)*E[k,0] for k in range(dim)]
    A029582_list(15)  # Peter Luschny, Jul 14 2012

Formula

G.f.: (1+x)/(1+x^2)+x/T(0) where T(k)= 1 - (k+1)*(k+2)*x^2/T(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 12 2013
G.f.: (1+x)/(1+x^2)+x/G(0) where G(k) = 1 - 2*x^2*(4*k^2+4*k+1) - 4*x^4*(k+1)^2*(4*k^2+8*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 12 2013

A236935 The infinite Seidel matrix H read by antidiagonals upwards; H = (H(n,k): n,k >= 0).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, -5, -10, -14, -16, -16, -61, -61, -56, -46, -32, -16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, -1385, -2770, -4094, -5296, -6320, -7120, -7664, -7936, -7936, -50521, -50521, -49136, -46366, -42272, -36976, -30656, -23536, -15872, -7936, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 17 2014

Keywords

Comments

This is, in essence, a signed version of the triangle in A008280.

Examples

			Array begins:
     1   -1    0    2    0 -16   0 272 0 ...
     0   -1    2    2  -16 -16 272 272 ...
    -1    1    4  -14  -32 256 544 ...
     0    5  -10  -46  224 800 ...
     5   -5  -56  178 1024 ...
     0  -61  122 1202 ...
   -61   61 1324 ...
     0 1385 ...
  1385 ...
  ...
		

Crossrefs

Programs

  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    H(n,k) = sum(i=0, k, (-1)^i*binomial(k,i)*a(n+k-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    H(n,k) = (-1)^(n+k)*sum(i=0, k, binomial(k,i)*a(n+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

From Petros Hadjicostas, Feb 20 2021: (Start)
H(n,0) = A122045(n).
H(0,k) = (-1)^n*A155585(n).
H(n,k) = Sum_{i=0..n} binomial(n,i)*H(0,k+i).
H(n,k) = Sum_{i=0..k} (-1)^i*binomial(k,i)*H(n+k-i,0).
H(n,n) = A099023(n).
Bivariate e.g.f.: Sum_{n,k>=0} H(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(x)/(1 + exp(2*(x+y))).
H(n,k) = (-1)^(n+k)*A239005(n+k,k), where the latter is a triangle.
H(n,k) = -A008280(n+k,k) if ((n+k) mod 4) == 1 or 2, and H(n,k) = A008280(n+k,k) if ((n+k) mod 4) == 3 or 0, provided A008280 is read as a triangle. (End)

Extensions

More terms from Petros Hadjicostas, Feb 21 2021

A213736 Triangle read by rows, coefficients of the Swiss-Knife median polynomials M_{n}(x) in descending order of powers.

Original entry on oeis.org

1, 1, -1, -1, 1, -2, -5, 6, 4, 1, -3, -12, 29, 57, -72, -46, 1, -4, -22, 80, 261, -660, -1264, 1608, 1024, 1, -5, -35, 170, 775, -2941, -9385, 23880, 45620, -58080, -36976, 1, -6, -51, 310, 1815, -9186, -41033, 156618, 498660, -1269720, -2425056, 3087648
Offset: 0

Views

Author

Peter Luschny, Jun 19 2012

Keywords

Comments

M(n,0) = M(n,1) = A099023(n) = (-1)^n*A000657(n).

Examples

			M(0,x) = 1,
M(1,x) = x^2-x-1,
M(2,x) = x^4-2*x^3-5*x^2+6*x+4,
M(3,x) = x^6-3*x^5-12*x^4+29*x^3+57*x^2-72*x-46.
		

Crossrefs

Programs

  • Maple
    A213736_triangle := proc(n) local A, len, k, m, sk_poly;
    len := 2*n-1; A := array(0..len,0..len);
    sk_poly := proc(n, x) local v, k;
    add(`if`((k+1)mod 4 = 0,0,(-1)^iquo(k+1,4))*2^iquo(-k,2)*
    add((-1)^v*binomial(k,v)*(v+x+1)^n,v=0..k),k=0..n) end:
    for m from 0 to len do A[m,0] := sk_poly(m,x);
       for k from m-1 by -1 to 0 do
           A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
    seq(print(seq(coeff(A[k,k],x,2*k-i),i=0..2*k)),k=0..n-1) end:
    A213736_triangle(5);
Showing 1-7 of 7 results.