A000657
Median Euler numbers (the middle numbers of Arnold's shuttle triangle).
Original entry on oeis.org
1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0
- V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
- Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
-
a000657 n = a008280 (2 * n) n -- Reinhard Zumkeller, Nov 01 2013
-
Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
-
max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
-
a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
-
# Algorithm of L. Seidel (1877)
def A000657_list(n) :
R = []; A = {-1:0, 0:1}
k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) :
Am += A[k]; A[k] = Am; k += e
if e < 0 :
R.append(A[0])
return R
A000657_list(30) # Peter Luschny, Apr 02 2012
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A163982
Real part of the coefficient [x^n] of the expansion of (1+i)/(1-i*exp(x)) - 1 multiplied by 2*n!, where i is the imaginary unit.
Original entry on oeis.org
-2, -1, 1, 2, -5, -16, 61, 272, -1385, -7936, 50521, 353792, -2702765, -22368256, 199360981, 1903757312, -19391512145, -209865342976, 2404879675441, 29088885112832, -370371188237525, -4951498053124096, 69348874393137901
Offset: 0
-
A163982 := n -> -2^n*(euler(n,1/2)+euler(n,1)): # Peter Luschny, Nov 25 2010
A163982 := proc(n)
(1+I)/(1-I*exp(x))-1 ;
coeftayl(%,x=0,n) ;
Re(%*2*n!) ;
end proc; # R. J. Mathar, Mar 26 2013
-
f[t_] = (1 + I)/(1 - I*Exp[t]) - 1; Table[Re[2*n!*SeriesCoefficient[Series[f[t], {t, 0, 30}], n]], {n, 0, 30}]
max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 + x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 / g[k+1]); gf = -2 - x/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jan 22 2015, after Sergei N. Gladkovskii *)
With[{nn = 50}, CoefficientList[Series[(-2)*Exp[t/2]*Cosh[t/2]/Cosh[t], {t, 0, nn}], t]*Range[0, nn]!] (* G. C. Greubel, Aug 24 2017 *)
-
t='t+O('t^10); Vec(serlaplace((-2)*exp(x/2)*cosh(x/2)/cosh(x))) \\ G. C. Greubel, Aug 24 2017
A009744
Expansion of e.g.f. tan(x)*sin(x) (even powers only).
Original entry on oeis.org
0, 2, 4, 62, 1384, 50522, 2702764, 199360982, 19391512144, 2404879675442, 370371188237524, 69348874393137902, 15514534163557086904, 4087072509293123892362, 1252259641403629865468284, 441543893249023104553682822, 177519391579539289436664789664
Offset: 0
-
seq((2*i)!*coeff(series(tan(x)*sin(x),x,30),x,2*i),i=0..14); # Peter Luschny, Jul 14 2012
-
nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*Sin[x], {x, 0, nn}], x]; Take[t, {1, nn, 2}] (* T. D. Noe, Jul 15 2012 *)
-
x='x+O('x^50); v=Vec(serlaplace(tan(x)*sin(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Mar 04 2018
-
# Variant of an algorithm of L. Seidel (1877) with a(0) = 1.
def A009744_list(n) :
dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
for m in (1..dim-1) :
if m % 2 == 0 :
E[m, 0] = 1;
for k in range(m-1, -1, -1) :
E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
else :
E[0, m] = 1;
for k in range(1, m+1, 1) :
E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
return [(-1)^(k//2)*E[0,k] for k in range(dim) if is_even(k)]
A009744_list(14) # Peter Luschny, Jul 14 2012
A239005
Signed version of the Seidel triangle for the Euler numbers, read by rows.
Original entry on oeis.org
1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0
The triangle T(n,k) begins:
1
0 1
-1 -1 0
0 -1 -2 -2
5 5 4 2 0
...
The array read as a table, A(n,k) = T(n+k, k), starts:
1, 1, 0, -2, 0, 16, 0, -272, 0, ...
0, -1, -2, 2, 16, -16, -272, 272, ...
-1, -1, 4, 14, -32, -256, 544, ...
0, 5, 10, -46, -224, 800, ...
5, 5, -56, -178, 1024, ...
0, -61, -122, 1202, ...
-61, -61, 1324, ...
0, 1385, ...
1385, ...
...
For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
-
t[0, 0] = 1; t[n_, m_] /; nJean-François Alcover, Dec 30 2014 *)
-
T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* Vladimir Kruchinin, Apr 06 2015 */
-
a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */
/* Second PARI program (same a(n) for A122045 as above) */
T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */
A029582
E.g.f. sin(x) + cos(x) + tan(x).
Original entry on oeis.org
1, 2, -1, 1, 1, 17, -1, 271, 1, 7937, -1, 353791, 1, 22368257, -1, 1903757311, 1, 209865342977, -1, 29088885112831, 1, 4951498053124097, -1, 1015423886506852351, 1, 246921480190207983617, -1, 70251601603943959887871, 1, 23119184187809597841473537
Offset: 0
-
nn = 30; Range[0, nn]! CoefficientList[Series[Tan[x] + Sin[x] + Cos[x], {x, 0, nn}], x] (* T. D. Noe, Jul 16 2012 *)
-
# Variant of an algorithm of L. Seidel (1877).
def A029582_list(n) :
dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
for m in (1..dim-1) :
if m % 2 == 0 :
E[m, 0] = 1;
for k in range(m-1, -1, -1) :
E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
else :
E[0, m] = 1;
for k in range(1, m+1, 1) :
E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
return [(-1)^(k//2)*E[k,0] for k in range(dim)]
A029582_list(15) # Peter Luschny, Jul 14 2012
A236935
The infinite Seidel matrix H read by antidiagonals upwards; H = (H(n,k): n,k >= 0).
Original entry on oeis.org
1, 0, -1, -1, -1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, -5, -10, -14, -16, -16, -61, -61, -56, -46, -32, -16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, -1385, -2770, -4094, -5296, -6320, -7120, -7664, -7936, -7936, -50521, -50521, -49136, -46366, -42272, -36976, -30656, -23536, -15872, -7936, 0
Offset: 0
Array begins:
1 -1 0 2 0 -16 0 272 0 ...
0 -1 2 2 -16 -16 272 272 ...
-1 1 4 -14 -32 256 544 ...
0 5 -10 -46 224 800 ...
5 -5 -56 178 1024 ...
0 -61 122 1202 ...
-61 61 1324 ...
0 1385 ...
1385 ...
...
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Annals of Discrete Mathematics, 6 (1980), 77-87.
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, European Journal of Combinatorics, 42 (2014), 243-260.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187; see Beilage 4 (p. 187).
-
a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
H(n,k) = sum(i=0, k, (-1)^i*binomial(k,i)*a(n+k-i)) /* Petros Hadjicostas, Feb 21 2021 */
/* Second PARI program (same a(n) for A122045 as above) */
H(n,k) = (-1)^(n+k)*sum(i=0, k, binomial(k,i)*a(n+i)) /* Petros Hadjicostas, Feb 21 2021 */
A213736
Triangle read by rows, coefficients of the Swiss-Knife median polynomials M_{n}(x) in descending order of powers.
Original entry on oeis.org
1, 1, -1, -1, 1, -2, -5, 6, 4, 1, -3, -12, 29, 57, -72, -46, 1, -4, -22, 80, 261, -660, -1264, 1608, 1024, 1, -5, -35, 170, 775, -2941, -9385, 23880, 45620, -58080, -36976, 1, -6, -51, 310, 1815, -9186, -41033, 156618, 498660, -1269720, -2425056, 3087648
Offset: 0
M(0,x) = 1,
M(1,x) = x^2-x-1,
M(2,x) = x^4-2*x^3-5*x^2+6*x+4,
M(3,x) = x^6-3*x^5-12*x^4+29*x^3+57*x^2-72*x-46.
-
A213736_triangle := proc(n) local A, len, k, m, sk_poly;
len := 2*n-1; A := array(0..len,0..len);
sk_poly := proc(n, x) local v, k;
add(`if`((k+1)mod 4 = 0,0,(-1)^iquo(k+1,4))*2^iquo(-k,2)*
add((-1)^v*binomial(k,v)*(v+x+1)^n,v=0..k),k=0..n) end:
for m from 0 to len do A[m,0] := sk_poly(m,x);
for k from m-1 by -1 to 0 do
A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
seq(print(seq(coeff(A[k,k],x,2*k-i),i=0..2*k)),k=0..n-1) end:
A213736_triangle(5);
Showing 1-7 of 7 results.
Comments