cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010050 a(n) = (2n)!.

Original entry on oeis.org

1, 2, 24, 720, 40320, 3628800, 479001600, 87178291200, 20922789888000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Denominators in the expansion of cos(x): cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - ...
Contribution from Peter Bala, Feb 21 2011: (Start)
We may compare the representation a(n) = Product_{k = 0..n-1} (n*(n+1)-k*(k+1)) with n! = Product_{k = 0..n-1} (n-k). Thus we may view a(n) as a generalized factorial function associated with the oblong numbers A002378. Cf. A000680.
The associated generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645, cf. A186432. (End)
Also, this sequence is the denominator of cosh(x) = (e^x + e^(-x))/2 = 1 + x^2/2! + x^4/4! + x^6/6! + ... - Mohammad K. Azarian, Jan 19 2012
Also (2n+1)-th derivative of arccoth(x) at x = 0. - Michel Lagneau, Aug 18 2012
Product of the partition parts of 2n+1 into exactly two positive integer parts, n > 0. Example: a(3) = 720, since 2(3)+1 = 7 has 3 partitions with exactly two positive integer parts: (6,1), (5,2), (4,3). Multiplying the parts in these partitions gives: 6! = 720. - Wesley Ivan Hurt, Jun 03 2013

Examples

			G.f. = 1 + 2*x + 24*x^2 + 720*x^3 + 40320*x^4 + 3628800*x^5 + ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
  • Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 32 and 33, equations 32:6:1 and 33:6:1 at pages 300 and 314.

Crossrefs

Programs

Formula

a(n) = 2^n*A000680(n).
E.g.f.: arctanh(x) = Sum_{k>=0} a(k) * x^(2*k+1)/ (2*k+1)!.
E.g.f.: 1/(1-x^2) = Sum_{k>=0} a(k) * x^(2*k) / (2*k)!. - Paul Barry, Sep 14 2004
D-finite with recurrence: a(n+1) = a(n)*(2*n+1)*(2*n+2) = a(n)*A002939(n-1). - Lekraj Beedassy, Apr 29 2005
a(n) = Product_{k = 1..n} (2*k*n-k*(k-1)). - Peter Bala, Feb 21 2011
G.f.: G(0) where G(k) = 1 + 2*x*(2*k+1)*(4*k+1)/(1 - 4*x*(k+1)*(4*k+3)/(4*x*(k+1)*(4*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2012
a(n) = 2*A002674(n), n > 0. - Wesley Ivan Hurt, Jun 05 2013
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*sqrt(Pi)*4^n*n^(2*n+1/2)/exp(2*n).
Sum_{n>=0} 1/a(n) = cosh(1) = A073743. (End)

Extensions

Third line of data from M. F. Hasler, Apr 22 2015