cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A248278 Egyptian fraction representation of sqrt(53) (A010506) using a greedy function.

Original entry on oeis.org

7, 4, 34, 1433, 3473810, 16229351336487, 949514635841230182654078450, 2889844410885034994651072554166092838631734010754362047, 90303610423494587890114446343335205731154007285533876023746429382538260256932049359769872513411427600496627202
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 53]]

A041090 Numerators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

7, 22, 29, 51, 182, 2599, 7979, 10578, 18557, 66249, 946043, 2904378, 3850421, 6754799, 24114818, 344362251, 1057201571, 1401563822, 2458765393, 8777860001, 125348805407, 384824276222, 510173081629, 894997357851, 3195165155182, 45627309530399
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A086902. For the terms of the periodical sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[53],30]] (* Harvey P. Dale, Sep 24 2013 *)
    CoefficientList[Series[-(x^9 - 7 x^8 + 22 x^7 - 29 x^6 + 51 x^5 + 182 x^4 + 51 x^3 + 29 x^2 + 22 x + 7)/(x^10 + 364 x^5 - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 27 2013 *)

Formula

a(5*n) = A086902(3*n+1), a(5*n+1) = (A086902(3*n+2)-A086902(3*n+1))/2, a(5*n+2) = (A086902(3*n+2)+A086902(3*n+1))/2, a(5*n+3) = A086902(3*n+2) and a(5*n+4) = A086902(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^9-7*x^8+22*x^7-29*x^6+51*x^5+182*x^4+51*x^3+29*x^2+22*x+7) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

Extensions

More terms from Colin Barker, Sep 26 2013

A041091 Denominators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

1, 3, 4, 7, 25, 357, 1096, 1453, 2549, 9100, 129949, 398947, 528896, 927843, 3312425, 47301793, 145217804, 192519597, 337737401, 1205731800, 17217982601, 52859679603, 70077662204, 122937341807, 438889687625, 6267392968557, 19241068593296, 25508461561853
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A054413. For the terms of the periodic sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Maple
    convert(sqrt(53), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[53], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[53], 30]] (* Vincenzo Librandi, Oct 24 2013 *)
    LinearRecurrence[{0,0,0,0,364,0,0,0,0,1},{1,3,4,7,25,357,1096,1453,2549,9100},30] (* Harvey P. Dale, Nov 13 2019 *)

Formula

a(5*n) = A054413(3*n), a(5*n+1) = (A054413(3*n+1) - A054413(3*n))/2, a(5*n+2)= (A054413(3*n+1) + A054413(3*n))/2, a(5*n+3) = A054413(3*n+1) and a(5*n+4) = A054413(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-3*x^7+4*x^6-7*x^5+25*x^4+7*x^3+4*x^2+3*x+1) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

A176439 Decimal expansion of (7+sqrt(53))/2.

Original entry on oeis.org

7, 1, 4, 0, 0, 5, 4, 9, 4, 4, 6, 4, 0, 2, 5, 9, 1, 3, 5, 5, 4, 8, 6, 5, 1, 2, 4, 5, 7, 6, 3, 5, 1, 6, 3, 9, 6, 8, 8, 8, 8, 3, 4, 8, 4, 1, 2, 8, 8, 2, 3, 8, 7, 1, 9, 1, 8, 9, 0, 9, 0, 8, 9, 5, 6, 4, 2, 0, 5, 7, 8, 6, 9, 3, 1, 2, 4, 5, 2, 5, 9, 1, 6, 6, 4, 7, 8, 9, 7, 0, 4, 5, 4, 0, 4, 6, 3, 3, 7, 6, 0, 9, 6, 3, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (7+sqrt(53))/2 is A010727.
This is the shape of a 7-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 09 2011
c^n = c * A054413(n-1) + A054413(n-2), where c = (7+sqrt(53))/2. - Gary W. Adamson, Apr 14 2024

Examples

			(7+sqrt(53))/2 = 7.14005494464025913554...
		

Crossrefs

Cf. A010506 (decimal expansion of sqrt(53)), A010727 (all 7's sequence).
Cf. A049310.

Programs

  • Mathematica
    r=7; t = (r + (4+r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    RealDigits[(7+Sqrt[53])/2,10,120][[1]] (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    (7+sqrt(53))/2 \\ Charles R Greathouse IV, Jul 24 2013

Formula

Equals lim_{n->oo} S(n, sqrt(53))/S(n-1, sqrt(53)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023
Positive solution of x^2 - 7*x - 1 = 0. - Hugo Pfoertner, Apr 14 2024

A010139 Continued fraction for sqrt(53).

Original entry on oeis.org

7, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, 3, 1, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			7.280109889280518271097302491... = 7 + 1/(3 + 1/(1 + 1/(1 + 1/(3 + ...)))). - _Harry J. Smith_, Jun 06 2009
		

Crossrefs

Cf. A010506 Decimal expansion. - Harry J. Smith, Jun 06 2009

Programs

  • Mathematica
    ContinuedFraction[Sqrt[53],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
    PadRight[{7},120,{14,3,1,1,3}] (* Harvey P. Dale, May 22 2016 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(53)); for (n=0, 20000, write("b010139.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 06 2009

A177271 Decimal expansion of sqrt(635918528029).

Original entry on oeis.org

7, 9, 7, 4, 4, 5, 0, 0, 0, 0, 0, 2, 5, 0, 8, 0, 0, 9, 9, 5, 6, 7, 9, 5, 5, 8, 4, 5, 7, 7, 0, 2, 8, 2, 6, 7, 9, 1, 1, 8, 8, 3, 1, 4, 7, 5, 2, 4, 6, 2, 4, 2, 1, 7, 4, 8, 3, 7, 3, 9, 2, 0, 0, 9, 2, 3, 7, 7, 2, 6, 0, 4, 9, 3, 7, 1, 7, 8, 6, 4, 0, 9, 4, 7, 9, 3, 8, 5, 3, 3, 2, 5, 5, 2, 2, 9, 5, 9, 7, 7, 3, 9, 3, 0, 0
Offset: 6

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of sqrt(635918528029) is 797445 followed by (repeat 398722, 1, 1, 398722, 1594890).
sqrt(635918528029) = sqrt(17)*sqrt(53)*sqrt(193)*sqrt(3656953).

Examples

			sqrt(635918528029) = 797445.00000250800995679558...
		

Crossrefs

Cf. A010473 (decimal expansion of sqrt(17)), A010506 (decimal expansion of sqrt(53)), A177272 (decimal expansion of sqrt(193)), A177273 (decimal expansion of sqrt(3656953)), A177274 (continued fraction expansion of (684125+sqrt(635918528029))/1033802), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802).

Programs

  • Mathematica
    First[RealDigits[Sqrt[635918528029],10,120]] (* Paolo Xausa, Jan 09 2024 *)

A378798 Decimal expansion of 16/(207*sqrt(53)).

Original entry on oeis.org

0, 1, 0, 6, 1, 7, 2, 4, 1, 6, 5, 7, 8, 6, 9, 6, 8, 3, 0, 1, 3, 1, 7, 6, 2, 6, 8, 3, 3, 1, 4, 5, 8, 6, 2, 0, 4, 2, 6, 6, 1, 9, 5, 1, 6, 4, 4, 5, 2, 8, 5, 1, 7, 3, 5, 4, 9, 7, 2, 6, 6, 3, 4, 6, 4, 2, 2, 8, 8, 3, 8, 3, 1, 7, 5, 4, 6, 2, 4, 4, 4, 8, 9, 4, 1, 0, 9, 3, 1, 2, 7, 8, 3, 2, 7, 3, 6, 1, 4, 8, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 07 2024

Keywords

Examples

			0.010617241657869683013176268331458620426619516445285...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.23, p. 174.

Crossrefs

Cf. A010506.

Programs

  • Mathematica
    RealDigits[16/(207Sqrt[53]),10,100][[1]]
Showing 1-7 of 7 results.