cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A047892 a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

2, 4, 16, 112, 448, 7168, 157696, 5361664, 166211584, 5651193856, 276908498944, 19383594926080, 1298700860047360, 79220752462888960, 6733763959345561600, 592571228422409420800, 45035413360103115980800
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

a(n) mod 9 = A010712(n-1) for n > 1. - Reinhard Zumkeller, Sep 23 2007

Crossrefs

Cf. A004207.
Cf. A007953.
Cf. A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047892 n = a047892_list !! (n-1)
    a047892_list = iterate a057147 2  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,2,20] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

Extensions

Offset changed by Reinhard Zumkeller, Mar 19 2014

A010691 Period 2: repeat (1,10).

Original entry on oeis.org

1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10
Offset: 0

Views

Author

Keywords

Comments

Regular continued fraction of (5+sqrt 35)/10. - R. J. Mathar, Nov 21 2011
Sequence is an infinite palindrome in two ways (numbers and English names): ONE, TEN, ONE, TEN, ONE, TEN, ONE, ... . - Eric Angelini, Sep 16 2023

Crossrefs

Programs

  • Magma
    [10^n mod 11: n in [0..80]]; // Vincenzo Librandi, Aug 24 2011
  • Maple
    g:=(1+10*z)/((1-z^2)): gser:=series(g, z=0, 66): seq((coeff(gser, z, n)), n=0..65); # Zerinvary Lajos, Feb 25 2009
  • Mathematica
    PadRight[{},100,{1,10}] (* Harvey P. Dale, Aug 27 2013 *)

Formula

a(n) = -9/2*(-1)^n + 11/2.
G.f.: (1+10*z)/(1-z^2). - Zerinvary Lajos, Feb 25 2009
a(n) = 10^n mod 11. - M. F. Hasler, Mar 10 2011
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 10/a(n-1). See also A010695.
a(n) = 11 - a(n-1). See also A010712. (End)

A176217 Decimal expansion of (14+4*sqrt(14))/7.

Original entry on oeis.org

4, 1, 3, 8, 0, 8, 9, 9, 3, 5, 2, 9, 9, 3, 9, 5, 0, 7, 7, 4, 7, 6, 4, 2, 7, 8, 4, 7, 0, 3, 8, 0, 2, 8, 1, 7, 2, 4, 3, 2, 0, 1, 1, 3, 1, 8, 7, 3, 0, 7, 0, 1, 1, 1, 2, 1, 7, 3, 5, 6, 8, 8, 3, 8, 4, 6, 8, 5, 9, 1, 5, 1, 7, 8, 8, 9, 6, 7, 9, 4, 4, 4, 5, 5, 8, 1, 7, 7, 0, 8, 2, 9, 6, 8, 2, 1, 6, 8, 9, 8, 0, 0, 0, 5, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of (14+4*sqrt(14))/7 is A010712.

Examples

			(14+4*sqrt(14))/7 = 4.13808993529939507747...
		

Crossrefs

Cf. A010471 (decimal expansion of sqrt(14)), A010712 (repeat 4, 7).

Programs

  • Mathematica
    RealDigits[(14+4Sqrt[14])/7,10,120][[1]] (* Harvey P. Dale, Jan 24 2015 *)

A135541 a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3), with a(0) = 2, a(1) = 2.

Original entry on oeis.org

0, 2, 7, 12, 21, 44, 91, 180, 357, 716, 1435, 2868, 5733, 11468, 22939, 45876, 91749, 183500, 367003, 734004, 1468005, 2936012, 5872027, 11744052, 23488101, 46976204, 93952411, 187904820, 375809637, 751619276, 1503238555, 3006477108
Offset: 0

Views

Author

Paul Curtz, Feb 22 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0, 2, 7]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
  • Mathematica
    LinearRecurrence[{2,-1,2},{0,2,7},40] (* Vincenzo Librandi, Jun 17 2012 *)

Formula

From R. J. Mathar, Feb 23 2008: (Start)
O.g.f.: -7/(5*(2x-1)) - (4x+7)/(5*(x^2+1)).
a(n) = (7*2^n - (-1)^floor(n/2)*A010712(n+1))/5. (End)
E.g.f.: (1/5)*(7*cosh(2*x) + 7*sinh(2*x) - 7*cos(x) - 4*sin(x)). - G. C. Greubel, Oct 18 2016

Extensions

More terms from R. J. Mathar, Feb 23 2008

A171231 a(n) = (10*2^n + 3 - (-1)^n)/6.

Original entry on oeis.org

2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1707, 3414, 6827, 13654, 27307, 54614, 109227, 218454, 436907, 873814, 1747627, 3495254, 6990507, 13981014, 27962027, 55924054, 111848107, 223696214, 447392427, 894784854, 1789569707
Offset: 0

Views

Author

Paul Curtz, Dec 05 2009

Keywords

Comments

From 14, the last 2 digits are of period 4: repeat [14, 27, 54, 07]. - Paul Curtz, Nov 22 2024

Crossrefs

Cf. A000035, A000975, A048573, A136412 (1st bisection), 2*A136412 (2nd bisection).

Programs

  • Magma
    [( 10*2^n+3-(-1)^n )/6: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{2,4,7},40] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    a(n)=(10<Charles R Greathouse IV, Jul 07 2011
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n >= 3.
a(n+1) - a(n) = A048573(n-1).
a(n) = 2*A000975(n+1) - 3*A000975(n-1).
a(n) - a(n-2) = 5*2^n.
a(n+1) - 2*a(n) = ((-1)^n-1)/2 = -A000035(n).
G.f.: ( 2-3*x^2 ) / ( (x-1)*(2*x-1)*(1+x) ). - R. J. Mathar, Jul 07 2011
a(n) = ceiling( (5/3)*(2^n) ). - Wesley Ivan Hurt, Jun 28 2013

Extensions

Definition replaced by the Lava formula of 2009. Contents converted to formulas. - R. J. Mathar, Jul 07 2011

A176436 Decimal expansion of (7+2*sqrt(14))/2.

Original entry on oeis.org

7, 2, 4, 1, 6, 5, 7, 3, 8, 6, 7, 7, 3, 9, 4, 1, 3, 8, 5, 5, 8, 3, 7, 4, 8, 7, 3, 2, 3, 1, 6, 5, 4, 9, 3, 0, 1, 7, 5, 6, 0, 1, 9, 8, 0, 7, 7, 7, 8, 7, 2, 6, 9, 4, 6, 3, 0, 3, 7, 4, 5, 4, 6, 7, 3, 2, 0, 0, 3, 5, 1, 5, 6, 3, 0, 6, 9, 3, 9, 0, 2, 7, 9, 7, 6, 8, 0, 9, 8, 9, 5, 1, 9, 4, 3, 7, 9, 5, 7, 1, 5, 0, 0, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (7+2*sqrt(14))/2 is A010712 preceded by 7.

Examples

			(7+2*sqrt(14))/2 = 7.24165738677394138558...
		

Crossrefs

Cf. A010471 (decimal expansion of sqrt(14)), A010712 (repeat 4, 7).
Showing 1-6 of 6 results.