cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A010919 Pisot sequence T(4,13), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

4, 13, 42, 135, 433, 1388, 4449, 14260, 45706, 146496, 469546, 1504979, 4823727, 15460908, 49554976, 158832563, 509086778, 1631714194, 5229935889, 16762880107, 53728029453, 172207945799, 551957272549, 1769121798104, 5670351840955, 18174492018967
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 4; a[1] = 13; a[n_] := a[n] = Floor[a[n-1]^2/a[n-2]]; Array[a, 30, 0] (* Jean-François Alcover, Dec 14 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 4, 13) \\ Colin Barker, Jul 29 2016

Formula

Appears to satisfy the g.f. (4+x-x^2-x^4-x^36)/(1-3*x-x^2+x^3+x^5+x^37), where there is a common factor of 1+x that can be canceled, so the sequence appears to satisfy a linear recurrence of order 36. I believe that David Boyd has proved that the sequence does indeed satisfy this recurrence. - N. J. A. Sloane, Aug 11 2016

A010920 Pisot sequence T(3,13), a(n) = floor( a(n-1)^2/a(n-2) ).

Original entry on oeis.org

3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,13]; [n le 2 select I[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..25]]; // Bruno Berselli, Sep 03 2013
  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 13, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 25}] (* Bruno Berselli, Sep 03 2013 *)

Formula

Empirical G.f.: (3-2*x)/(1-5*x+3*x^2). - Colin Barker, Feb 21 2012
Empirical: a(n) = 5*a(n-1)-3*a(n-2) with n>1, a(0)=3 and a(1)=13. - Vincenzo Librandi, Apr 17 2012
The empirical g.f. and recurrence above hold for n<=6000. - Bruno Berselli, Sep 03 2013
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016

A020746 Pisot sequence T(3,7), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

3, 7, 16, 36, 81, 182, 408, 914, 2047, 4584, 10265, 22986, 51471, 115255, 258081, 577899, 1294040, 2897633, 6488421, 14528964, 32533461, 72849384, 163125366, 365272615, 817923579, 1831505986, 4101133972, 9183316890, 20563412382, 46045882316, 103106587509
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Iv:=[3,7]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 7, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    nxt[{a_,b_}]:={b,Floor[b^2/a]}; NestList[nxt,{3,7},30][[All,1]] (* Harvey P. Dale, Oct 11 2020 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 3, 7) \\ Colin Barker, Jul 29 2016

Formula

Conjectured g.f.: (-x^5+x^4-x^3+x^2-2*x+3)/((1-x)*(1-2*x-x^3-x^5)). - Ralf Stephan, May 12 2004
I believe that David Boyd has proved that this g.f. is correct. - N. J. A. Sloane, Aug 11 2016

A010901 Pisot sequences E(4,7), P(4,7).

Original entry on oeis.org

4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521, 786584466
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A005251: a(n) = A005251(n+5).
See A008776 for definitions of Pisot sequences.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 1}, {4, 7, 12}, 35] (* Jean-François Alcover, Oct 05 2018 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 4, 7) \\ Colin Barker, Jul 27 2016

Formula

a(n) = 2a(n-1) - a(n-2) + a(n-3) for n>=3. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016

Extensions

Edited by N. J. A. Sloane, Jul 26 2016

A010905 Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15.

Original entry on oeis.org

4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Programs

  • Magma
    /* By definition: */ [n le 2 select 11*n-7 else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..22]]; // Bruno Berselli, Apr 16 2012
    
  • Mathematica
    a[0] = 4; a[1] = 15; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 24}] (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 4, 15) \\ Colin Barker, Jul 27 2016
    
  • Sage
    @cached_function
    def A010905(n):
        if n==0: return 4
        elif n==1: return 15
        else: return 4*A010905(n-1) - A010905(n-2)
    [A010905(n) for n in range(30)] # G. C. Greubel, Dec 13 2018

Formula

a(n) = 4*a(n-1) - a(n-2) for n>=2. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
This was conjectured by Colin Barker, Apr 16 2012, and implies the G.f.: (4-x)/(1-4*x+x^2) and the formula a(n) = ((1+sqrt(3))^(2*n+4)-(1-sqrt(3))^(2*n+4))/(2^(n+3)*sqrt(3)).
Partial sums of A079935. - Erin Pearse, Dec 13 2018

Extensions

Edited by N. J. A. Sloane, Jul 26 2016 and Sep 09 2016

A019992 a(n) = 4*a(n-1) + a(n-2) - a(n-3) - a(n-5).

Original entry on oeis.org

5, 21, 88, 368, 1538, 6427, 26857, 112229, 468978, 1959746, 8189306, 34221135, 143001871, 597570335, 2497102330, 10434788478, 43604464772, 182212543365, 761422279419, 3181800093939, 13295975323332, 55560674643076, 232174661258332, 970201922073653, 4054239874815929, 16941690784755705, 70795240417122020
Offset: 0

Views

Author

Keywords

Crossrefs

This is different from A010925. See the comments in that sequence.

Programs

  • Magma
    I:=[5, 21, 88, 368, 1538]; [n le 5 select I[n] else 4*Self(n-1)+Self(n-2)-Self(n-3)-Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 20 2012
  • Mathematica
    CoefficientList[Series[(5+x-x^2-x^4)/(1-4*x-x^2+x^3+x^5),{x,0,30}],x] (* Vincenzo Librandi, Apr 20 2012 *)
    LinearRecurrence[{4,1,-1,0,-1},{5,21,88,368,1538},30] (* Harvey P. Dale, May 03 2020 *)

Formula

G.f.: (5+x-x^2-x^4)/(1-4*x-x^2+x^3+x^5). - Colin Barker, Feb 21 2012

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004

A020748 Pisot sequence T(4,10), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

4, 10, 25, 62, 153, 377, 928, 2284, 5621, 13833, 34042, 83774, 206159, 507335, 1248496, 3072412, 7560869, 18606469, 45788478, 112680418, 277294139, 682390435, 1679287948, 4132543288, 10169735361, 25026602289, 61587720810, 151560619806, 372974046999
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==4,a[1]==10,a[n]==Floor[a[n-1]^2/a[n-2]]},a,{n,30}] (* Harvey P. Dale, Dec 26 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 4, 10) \\ Colin Barker, Jul 29 2016

Formula

G.f.: (-3x^5+2x^4+x^3-x^2-2x+4)/[(1-x)(1-2x-x^2-2x^5)] (conjectured). - Ralf Stephan, May 12 2004
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016

A020749 Pisot sequence T(5,8), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412, 18059373
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A020745.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Txy:=[5,8]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 8, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 05 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 5, 8) \\ Colin Barker, Jul 29 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016

A020750 Pisot sequence T(5,9), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

5, 9, 16, 28, 49, 85, 147, 254, 438, 755, 1301, 2241, 3860, 6648, 11449, 19717, 33955, 58474, 100698, 173411, 298629, 514265, 885608, 1525092, 2626337, 4522773, 7788595, 13412614, 23097646, 39776083, 68497749, 117958865, 203135052, 349815584, 602411753
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Iv:=[5, 9]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    nxt[{a_,b_}]:={b,Floor[b^2/a]}; NestList[nxt,{5,9},40][[All,1]] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 5, 9) \\ Colin Barker, Jul 29 2016

Formula

a(n) = 2*a(n-1) - 2*a(n-4) + a(n-5) (holds at least up to n = 40000 but is not known to hold in general).
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016

Extensions

Deleted unproved recurrence and program based on it. - N. J. A. Sloane, Feb 04 2016

A048582 Pisot sequence L(4,9).

Original entry on oeis.org

4, 9, 21, 49, 115, 270, 634, 1489, 3498, 8218, 19307, 45359, 106565, 250361, 588192, 1381884, 3246565, 7627402, 17919636, 42099965, 98908653, 232373629, 545933059, 1282602102, 3013314774, 7079409829, 16632196530, 39075285666, 91802543767, 215678705823
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 4, 1, 9, _, Ceiling[a[n-1]^2/a[n-2]]];
    a /@ Range[0, 29] (* Jean-François Alcover, Oct 22 2019 *)
  • PARI
    pisotL(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
      a
    }
    pisotL(50, 4, 9) \\ Colin Barker, Aug 07 2016

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) + a(n-4) - 2*a(n-5) + a(n-6) - a(n-7) (conjectured). Recurrence is satisfied for at least 760000 terms. - Chai Wah Wu, Jul 25 2016
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016
Showing 1-10 of 12 results. Next