cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A281026 a(n) = floor(3*n*(n+1)/4).

Original entry on oeis.org

0, 1, 4, 9, 15, 22, 31, 42, 54, 67, 82, 99, 117, 136, 157, 180, 204, 229, 256, 285, 315, 346, 379, 414, 450, 487, 526, 567, 609, 652, 697, 744, 792, 841, 892, 945, 999, 1054, 1111, 1170, 1230, 1291, 1354, 1419, 1485, 1552, 1621, 1692, 1764, 1837, 1912, 1989, 2067, 2146
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2017

Keywords

Crossrefs

Subsequence of A214068.
Partial sums of A047273.
Cf. A011865, A045943, A274757 (subsequence).
Cf. sequences with formula floor(k*n*(n+1)/4): A011848 (k=1), A000217 (k=2), this sequence (k=3), A002378 (k=4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), this sequence (k=3), A281151 (k=4), A194275 (k=5).

Programs

  • Magma
    [3*n*(n+1) div 4: n in [0..60]];
  • Maple
    A281026:=n->floor(3*n*(n+1)/4): seq(A281026(n), n=0..100); # Wesley Ivan Hurt, Jan 13 2017
  • Mathematica
    Table[Floor[3 n (n + 1)/4], {n, 0, 60}]
    LinearRecurrence[{3,-4,4,-3,1},{0,1,4,9,15},60] (* Harvey P. Dale, Jun 04 2023 *)
  • Maxima
    makelist(floor(3*n*(n+1)/4), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(3*n*(n+1)/4))
    
  • Python
    [int(3*n*(n+1)/4) for n in range(60)]
    
  • Sage
    [floor(3*n*(n+1)/4) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x + x^2)/((1 + x^2)*(1 - x)^3).
E.g.f.: -(1 - 6*x - 3*x^2)*exp(x)/4 - (1 + i)*(i - exp(2*i*x))*exp(-i*x)/8, where i=sqrt(-1).
a(n) = a(-n-1) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) = a(n-4) + 6*n - 9.
a(n) = 3*n*(n+1)/4 + (i^(n*(n+1)) - 1)/4. Therefore:
a(4*k+r) = 12*k^2 + 3*(2*r+1)*k + r^2, where 0 <= r <= 3.
a(n) = n^2 - floor((n-1)*(n-2)/4).
a(n) = A011865(3*n+2).

A084626 a(n) = floor(C(n+6,6)/C(n+2,2)).

Original entry on oeis.org

1, 2, 4, 8, 14, 22, 33, 47, 66, 91, 121, 158, 204, 258, 323, 399, 487, 590, 708, 843, 996, 1170, 1365, 1583, 1827, 2097, 2397, 2728, 3091, 3490, 3927, 4403, 4921, 5483, 6092, 6751, 7462, 8227, 9050, 9933, 10879, 11891, 12972, 14125, 15353, 16660, 18048
Offset: 0

Views

Author

Paul Barry, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n+9)*(n^2+9*n+38)/360)+1: n in [0..50]]; // Vincenzo Librandi, Aug 02 2013
    
  • Mathematica
    Table[Floor[n*(n+9)*(n^2+9*n+38)/360] +1, {n,0,50}] (* Vincenzo Librandi, Aug 02 2013 *)
    Floor[Binomial[Range[6,76],4]/15] (* G. C. Greubel, Mar 24 2023 *)
  • SageMath
    [binomial(n+6,4)//15 for n in range(71)] # G. C. Greubel, Mar 24 2023

Formula

a(n) = 1 + floor( n*(n+9)*(n^2 +9*n +38)/360 ).
a(n) = floor(binomial(n+6,4)/15). - G. C. Greubel, Mar 24 2023

A268539 Numbers k such that 48*k + 25 is a perfect square.

Original entry on oeis.org

0, 2, 3, 7, 17, 25, 28, 38, 58, 72, 77, 93, 123, 143, 150, 172, 212, 238, 247, 275, 325, 357, 368, 402, 462, 500, 513, 553, 623, 667, 682, 728, 808, 858, 875, 927, 1017, 1073, 1092, 1150, 1250, 1312, 1333, 1397, 1507, 1575, 1598, 1668, 1788, 1862, 1887, 1963, 2093, 2173
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2016

Keywords

Comments

Equivalently, integers of the form (h+5)*(h-5)/48, where h must be odd, h = 2*m+1, thus also integers of the form (m+3)*(m-2)/12, with m = 2, 5, 6, 9, 14, 17, 18, ... = {2, 5, 6, 9} + 12 N. - M. F. Hasler, Mar 02 2016
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-1))*(1 + q^(8*n-7))/(1 + q^n) = Sum_{n >= 0} q^(2*n*(n+1)) * Product_{k >= 2*n+2} 1 - q^k = 1 - q^2 - q^3 + q^7 + q^17 - q^25 - q^28 + + - - ... (by the quintuple product identity and Mc Laughlin et al., S.38, p 16). - Peter Bala, Dec 30 2024
Conjecture: the sequence terms are also the exponents in the expansion of Sum_{n >= 0} q^n/(Product_{k = 1..2*n+1} 1 + q^k) = 1 + q^2 - q^3 - q^7 + q^17 + q^25 - - + + .... - Peter Bala, Jan 15 2025

Crossrefs

Subsequence of A011865.

Programs

  • Magma
    [n: n in [0..2200] | IsSquare(48*n+25)]; // Vincenzo Librandi, Feb 25 2016
    
  • Maple
    L := [5, 11, 13, 19, 29, 35, 37, 43]:
    seq(seq(((L[i]+48*j)^2-25)/48, i=1..8), j=0..10); # Robert Israel, Feb 29 2016
  • Mathematica
    Select[Range[0, 2500], IntegerQ[Sqrt[48 # + 25]] &] (* Vincenzo Librandi, Feb 25 2016 *)
    Table[(3 (n - 1) n + (2 n - 1) (-1)^((n - 2) (n - 1)/2) - 1)/4, {n, 1, 60}] (* Bruno Berselli, Feb 29 2016 *)
    LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {0, 2, 3, 7, 17, 25, 28}, 48] (* Robert G. Wilson v, Mar 05 2016 *)
    CoefficientList[ Series[ x*(2 - 3x + 8x^2 - 3x^3 + 2x^4)/((1 - x)^3*(1 + x^2)^2), {x, 0, 47}], x] (* Robert G. Wilson v, Mar 05 2016 *)
  • PARI
    isok(n) = issquare(48*n+25); \\ Michel Marcus, Feb 25 2016
    
  • PARI
    A268539(n)={my(m=n\4*12+[-3,2,5,6][n%4+1]);(3+m)*(m-2)/12} \\ M. F. Hasler, Mar 03 2016
    
  • Python
    from gmpy2 import is_square
    [k for k in range(2200) if is_square(48*k+25)] # Bruno Berselli, Dec 05 2016
  • Sage
    [n for n in (0..2200) if is_square(48*n+25)] # Bruno Berselli, Feb 29 2016
    

Formula

For n>25, a(n) = 3*( a(n-8)-a(n-16) ) + a(n-24). - Zak Seidov, Feb 28 2016
From Robert Israel, Feb 29 2016: (Start)
Let L = [5, 11, 13, 19, 29, 35, 37, 43].
Then a(i + 8*j) = ( (L(i) + 48*j)^2 - 25 )/48 for i = 1..8, j >= 0. (End)
From Bruno Berselli, Feb 29 2016: (Start)
G.f.: x^2*(2 - 3*x + 8*x^2 - 3*x^3 + 2*x^4)/((1 - x)^3*(1 + x^2)^2).
a(n) = a(-n+1) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>6.
a(n) = (3*(n-1)*n + (2*n-1)*(-1)^((n-2)*(n-1)/2) - 1)/4. Therefore:
a(4*k) = k*(12*k -5),
a(4*k+1) = k*(12*k +5),
a(4*k+2) = k*(12*k+11)+2 = (3*k+2)*(4*k+1),
a(4*k+3) = k*(12*k+13)+3 = (3*k+1)*(4*k+3).
From the previous formulas follows that 2, 3, 7 and 17 are the only primes of the sequence. (End)
Sum_{n>=2} 1/a(n) = 12/25 + (4/sqrt(3)-1)*Pi/5. - Amiram Eldar, Jul 30 2024

Extensions

More terms from Michel Marcus, Feb 25 2016

A084624 a(n) = floor(C(n+5,5)/C(n+2,2)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 16, 22, 28, 36, 45, 56, 68, 81, 96, 114, 133, 154, 177, 202, 230, 260, 292, 327, 365, 406, 449, 496, 545, 598, 654, 714, 777, 843, 913, 988, 1066, 1148, 1234, 1324, 1419, 1518, 1621, 1729, 1842, 1960, 2082, 2210, 2342, 2480, 2623, 2772, 2926
Offset: 0

Views

Author

Paul Barry, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Binomial(n+5,3)/10): n in [0..60]]; // G. C. Greubel, Mar 24 2023
    
  • Mathematica
    LinearRecurrence[{3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1},{1,2,3, 5,8,12,16,22,28,36,45,56,68,81,96,114,133,154,177,202,230, 260,292},53] (* Ray Chandler, Jul 17 2015 *)
    Table[Floor[Binomial[n+5,5]/Binomial[n+2,2]],{n,0,60}] (* or *) Table[ Floor[((3+n)(4+n)(5+n))/60],{n,0,60}] (* Harvey P. Dale, Sep 04 2017 *)
    Floor[Binomial[Range[5,65],3]/10] (* G. C. Greubel, Mar 24 2023 *)
  • SageMath
    [(binomial(n+5,3)//10) for n in range(61)] # G. C. Greubel, Mar 24 2023

Formula

a(n) = 1 + floor( n*(n^2 + 12*n + 47)/60 ).
From G. C. Greubel, Mar 24 2023: (Start)
a(n) = floor( binomial(n+5,3)/10 ).
G.f.: (1 -x +x^3 -x^6 +2*x^7 -2*x^8 +2*x^9 -x^10 +x^11 -x^12 +x^14 +x^15 -2*x^16 +x^17)/((1-x)^3*(1-x^20)). (End)

A255604 Table read by antidiagonals, T(n,k) is the integer part of the area of a regular k-gon with side length n.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 6, 9, 6, 2, 10, 16, 15, 10, 3, 15, 25, 27, 23, 14, 4, 21, 36, 43, 41, 32, 19, 6, 27, 49, 61, 64, 58, 43, 24, 7, 35, 64, 84, 93, 90, 77, 55, 30, 9, 43, 81, 110, 127, 130, 120, 98, 69, 37, 11, 52, 100, 139, 166, 178, 173, 154, 123, 84, 44, 13, 62, 121, 172
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 27 2015

Keywords

Comments

See illustration in the links.

Examples

			See table in the links.
		

Crossrefs

Row 1: A011865.
Columns 1,2,3,4,10: A171971, A000290, A255605, A255606, A172526.

Programs

  • Mathematica
    t[n_, k_] := Floor[k*n^2/(4 Tan[Pi/k])]; Table[t[n - k + 1, k], {n, 3, 14}, {k, 3 , n}] // Flatten
    (* to view table: Table[t[n, k], {k, 3, 6}, {n, 6}] // TableForm *) (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    {for(i=1,20,for(n=3,i-1,a=floor(n*(i-n)^2/(4*tan(Pi/n)));print1(a,", ")))}

Formula

T(n,k) = floor(k*n^2/(4*tan(Pi/k))), n >=1, k >=3.

A231559 a(n) = floor( A000326(n)/2 ).

Original entry on oeis.org

0, 0, 2, 6, 11, 17, 25, 35, 46, 58, 72, 88, 105, 123, 143, 165, 188, 212, 238, 266, 295, 325, 357, 391, 426, 462, 500, 540, 581, 623, 667, 713, 760, 808, 858, 910, 963, 1017, 1073, 1131, 1190, 1250, 1312, 1376, 1441, 1507, 1575, 1645, 1716, 1788, 1862, 1938
Offset: 0

Views

Author

Bruno Berselli, Nov 11 2013

Keywords

Comments

First trisection of A011865.

Crossrefs

Cf. pentagonal numbers: A000326.
Cf. A011848 for the triangular numbers: floor(A000217/2); A007590 for the squares: floor(A000290/2); A156859 for the hexagonal numbers: floor(A000384/2).
First differences: A047262.

Programs

  • Magma
    [Floor(n*(3*n-1)/4): n in [0..60]];
  • Mathematica
    Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
    CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3),{x,0,70}],x] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,0,2,6,11},70] (* Harvey P. Dale, Jan 28 2022 *)

Formula

G.f.: x^2*(2 + x^2)/((1 + x^2)*(1 - x)^3).
a(n) = ( n*(3*n-1) + i^(n*(n+1)) - 1 )/4, where i=sqrt(-1).

A084267 Partial sums of a binomial quotient.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 109, 131, 156, 184, 215, 250, 288, 330, 376, 426, 480, 538, 601, 668, 740, 817, 899, 987, 1080, 1179, 1284, 1395, 1512, 1635, 1765, 1901, 2044, 2194, 2351, 2516, 2688, 2868, 3056, 3252, 3456, 3668, 3889, 4118, 4356
Offset: 0

Views

Author

Paul Barry, Jun 01 2003

Keywords

Comments

Partial sums of A011865 are a(n)=sum{k=0..n, floor(C(k+2,4)/C(k+2,2))}.

Programs

  • Mathematica
    Accumulate[Table[Floor[Binomial[n,4]/Binomial[n,2]],{n,6,70}]]  (* Harvey P. Dale, Jul 19 2012 *)

Formula

a(n)=sum{k=0..n, floor(C(k+4, 4)/C(k+2, 2))}
G.f.: (x^4-x^3+x^2-x+1)/[(1-x)^4(1+x^2)(1+x+x^2)(1-x^2+x^4)].
Showing 1-7 of 7 results.