cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174738 Partial sums of floor(n/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Apart from the initial zeros, the same as A011867.

Examples

			a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-5)/14).
a(n) = floor((n-2)*(n-3)/14).
a(n) = ceiling((n+1)*(n-6)/14).
a(n) = a(n-7) + n - 6, n > 6.
a(n) = +2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Nov 30 2010
G.f.: x^7/( (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1-x)^3 ). - R. J. Mathar, Nov 30 2010
a(7n) = A001106(n), a(7n+1) = A218471(n), a(7n+2) = A022264(n), a(7n+3) = A022265(n), a(7n+4) = A186029(n), a(7n+5) = A179986(n), a(7n+6) = A024966(n). - Philippe Deléham, Mar 26 2013

A008725 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236, 244, 252, 261, 270, 279, 288, 297, 306
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 1 and 7, where there are two kinds of part 1. - Joerg Arndt, Sep 27 2020
Define a general Somos-4 sequence by b(n) = (p1*b(n-1)*b(n-3) + p2*b(n-2)^2)/b(n-4) with b(0) = b0, b(1) = b1, b(2) = b2, b(3) = b3 and where p1 = (b1^3*b2 - b0^3*b3) / (b0*(b1^3 + b0^2*b2)), p2 = -b1*(b2^2 + b0*b3) / (b1^3 + b0^2*b2). Then b(n) = -b(-1-n) for all n in Z. The denominator of b(n) is a power of b0 times (b1^3 + b0^2*b2)^a(n-4). - Michael Somos, Nov 23 2023

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,9,11];; for n in [10..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x)^2*(1-x^7)): seq(coeff(series(%, x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^7)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,9,11}, 80] (* Harvey P. Dale, Sep 27 2014 *)
    a[ n_] := Floor[(n+4)*(n+5)/14]; (* Michael Somos, Nov 23 2023 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^7))) \\ G. C. Greubel, Sep 09 2019
    
  • PARI
    {a(n) = (n+4)*(n+5)\14}; /* Michael Somos, Nov 23 2023 */
    
  • Sage
    def A008725_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^7))).list()
    A008725_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^7)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+7} floor(j/7).
a(n-7) = (1/2)*floor(n/7)*(2*n - 5 - 7*floor(n/7)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Apr 20 2010
a(n) = A011867(n+5). - Pontus von Brömssen, Sep 27 2020
a(n) = a(-9-n) = A174738(n+7) = floor((n+4)*(n+5)/14) for all n in Z. - Michael Somos, Nov 23 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Showing 1-2 of 2 results.