cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013655 a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.

Original entry on oeis.org

3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789, 243756479
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A001060.
Pisano period lengths same as for A001060. - R. J. Mathar, Aug 10 2012
The beginning of this sequence is the only sequence of four consecutive primes in a Fibonacci-type sequence. - Franklin T. Adams-Watters, Mar 21 2015
(a(2*k), a(2*k+1)) give for k >= 0 the proper positive solutions of one of two families (or classes) of solutions (x, y) of the indefinite binary quadratic form x^2 + x*y - y^2 of discriminant 5 representing 11. The other family of such solutions is given by (x2, y2) = (b(2*k), b(2*k+1)) with b = A104449. See the formula in terms of Chebyshev S polynomials S(n, 3) = A001906(n+1) below, which follows from the fundamental solution (3, 2) by applying positive powers of the automorphic matrix A^k = Matrix([A(k), B(k)], [B(k), A(k+1)]), with A(k) = S(k-1, 3) - S(k-2, 3) and B(k) = S(k-1, 3). See also A089270 with the Alfred Brousseau link with D = 11. - Wolfdieter Lang, May 28 2019
For n>1, a(n) is the number of ways to tile a strip of length n+1 with black and white squares and white dominos, where there must be exactly one black square and it must appear amongst the first three cells. - Greg Dresden and Emma Li, Aug 24 2024

Crossrefs

Programs

  • Magma
    [2*Fibonacci(n-3)+Fibonacci(n): n in [2..41]]; // Vincenzo Librandi, Apr 16 2011
    
  • Magma
    [GeneralizedFibonacciNumber(3, 2, n): n in [0..39]]; // Arkadiusz Wesolowski, Mar 16 2016
    
  • Maple
    with(combinat): a:=n->2*fibonacci(n-1)+fibonacci(n+2): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    LinearRecurrence[{1, 1}, {3, 2}, 40] (* or *)
    Table[Fibonacci[n + 1] + LucasL[n], {n, 0, 40}] (* or *)
    Table[Fibonacci[n + 3] + Fibonacci[n - 3] - 3*Fibonacci[n], {n,2,40}] (* Bruno Berselli, Dec 30 2016 *)
  • PARI
    a(n)=([0,1; 1,1]^n*[3;2])[1,1] \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    a(n)=2*fibonacci(n-3) + fibonacci(n) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A000045(n+1) + A000032(n).
a(n) = a(n-1) + a(n-2).
a(n) = F(n+3) - F(n-2) for n>1, where F=A000045. - Gerald McGarvey, Jul 10 2004
a(n) = 2*F(n-3) + F(n) for n>1. - Zerinvary Lajos, Oct 05 2007
G.f.: (3-x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = Sum_{k = n-3..n+1} F(k). - Gary Detlefs, Dec 30 2012
a(n) = ((3*sqrt(5)+1)*(((1+sqrt(5))/2)^n)+(3*sqrt(5)-1)*(((1-sqrt(5))/2)^n))/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = F(n+3) + F(n-3) - 3*F(n) for n>1. - Bruno Berselli, Dec 29 2016
Bisection: a(2*k) = 3*S(k, 3) - 4*S(k-1, 3), a(2*k+1) = 2*S(k, 3) + S(k-1, 3), for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(3n + 2)/a(3n - 1) = continued fraction 4,4,4,...,4,-5 (that's n 4's followed by a single -5). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: ((- 1 + 3*sqrt(5))*exp((1/2)*(1 - sqrt(5))*x) + (1 + 3*sqrt(5))*exp((1/2)*(1 + sqrt(5))*x))/(2*sqrt(5)). - Stefano Spezia, Jul 17 2019
a(n) = (F(3n+1) - F(n+1)^3)/(F(n)^2) for n>1, where F(n) = A000045(n). - Michael Tulskikh, Jul 22 2020
a(n) = 3 * Sum_{k=0..n-2} A168561(n-2,k) + 2 * Sum_{k=0..n-1} A168561(n-1,k), n>0. - R. J. Mathar, Feb 14 2024

Extensions

Definition corrected by Gary Detlefs, Dec 30 2012