A013655 a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.
3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789, 243756479
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, and John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv:1502.03085 [math.NT], 2015 (see p. 31).
- Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, The Geometry of some Fibonacci Identities in the Hosoya Triangle, arXiv:1804.02481 [math.NT], 2018.
- Tanya Khovanova, Recursive Sequences
- Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Magma
[2*Fibonacci(n-3)+Fibonacci(n): n in [2..41]]; // Vincenzo Librandi, Apr 16 2011
-
Magma
[GeneralizedFibonacciNumber(3, 2, n): n in [0..39]]; // Arkadiusz Wesolowski, Mar 16 2016
-
Maple
with(combinat): a:=n->2*fibonacci(n-1)+fibonacci(n+2): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
-
Mathematica
LinearRecurrence[{1, 1}, {3, 2}, 40] (* or *) Table[Fibonacci[n + 1] + LucasL[n], {n, 0, 40}] (* or *) Table[Fibonacci[n + 3] + Fibonacci[n - 3] - 3*Fibonacci[n], {n,2,40}] (* Bruno Berselli, Dec 30 2016 *)
-
PARI
a(n)=([0,1; 1,1]^n*[3;2])[1,1] \\ Charles R Greathouse IV, Sep 24 2015
-
PARI
a(n)=2*fibonacci(n-3) + fibonacci(n) \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = a(n-1) + a(n-2).
a(n) = F(n+3) - F(n-2) for n>1, where F=A000045. - Gerald McGarvey, Jul 10 2004
a(n) = 2*F(n-3) + F(n) for n>1. - Zerinvary Lajos, Oct 05 2007
G.f.: (3-x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = Sum_{k = n-3..n+1} F(k). - Gary Detlefs, Dec 30 2012
a(n) = ((3*sqrt(5)+1)*(((1+sqrt(5))/2)^n)+(3*sqrt(5)-1)*(((1-sqrt(5))/2)^n))/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = F(n+3) + F(n-3) - 3*F(n) for n>1. - Bruno Berselli, Dec 29 2016
Bisection: a(2*k) = 3*S(k, 3) - 4*S(k-1, 3), a(2*k+1) = 2*S(k, 3) + S(k-1, 3), for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(3n + 2)/a(3n - 1) = continued fraction 4,4,4,...,4,-5 (that's n 4's followed by a single -5). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: ((- 1 + 3*sqrt(5))*exp((1/2)*(1 - sqrt(5))*x) + (1 + 3*sqrt(5))*exp((1/2)*(1 + sqrt(5))*x))/(2*sqrt(5)). - Stefano Spezia, Jul 17 2019
a(n) = (F(3n+1) - F(n+1)^3)/(F(n)^2) for n>1, where F(n) = A000045(n). - Michael Tulskikh, Jul 22 2020
a(n) = 3 * Sum_{k=0..n-2} A168561(n-2,k) + 2 * Sum_{k=0..n-1} A168561(n-1,k), n>0. - R. J. Mathar, Feb 14 2024
Extensions
Definition corrected by Gary Detlefs, Dec 30 2012
Comments