A013929 Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160
Offset: 1
Examples
For the terms up to 20, we compute the squares of primes up to floor(sqrt(20)) = 4. Those squares are 4 and 9. For every such square s, put the terms s*k^2 for k = 1 to floor(20 / s). This gives after sorting and removing duplicates the list 4, 8, 9, 12, 16, 18, 20. - _David A. Corneth_, Oct 25 2017
References
- I. Perelman, L'Algèbre récréative, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
- Ya. I. Perelman, Algebra can be fun, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.
Links
- David A. Corneth, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
- H. Gent, Letter to N. J. A. Sloane, Nov 27 1975.
- Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv:1210.3829 [math.NT], 2012.
- Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.
- Srinivasa Ramanujan, Irregular numbers, J. Indian Math. Soc. 5 (1913) 105-106.
- Eric Weisstein's World of Mathematics, Smarandache Near-to-Primorial Function, Squarefree, Squareful, Moebius Function.
Crossrefs
Programs
-
Haskell
a013929 n = a013929_list !! (n-1) a013929_list = filter ((== 0) . a008966) [1..] -- Reinhard Zumkeller, Apr 22 2012
-
Magma
[ n : n in [1..1000] | not IsSquarefree(n) ];
-
Maple
a := n -> `if`(numtheory[mobius](n)=0,n,NULL); seq(a(i),i=1..160); # Peter Luschny, May 04 2009 t:= n-> product(ithprime(k),k=1..n): for n from 1 to 160 do (if t(n) mod n <>0) then print(n) fi od; # Gary Detlefs, Dec 07 2011 with(NumberTheory): isQuadrateful := n -> irem(Radical(n), n) <> 0: select(isQuadrateful, [`$`(1..160)]); # Peter Luschny, Jul 12 2022
-
Mathematica
Union[ Flatten[ Table[ n i^2, {i, 2, 20}, {n, 1, 400/i^2} ] ] ] Select[ Range[2, 160], (Union[Last /@ FactorInteger[ # ]][[ -1]] > 1) == True &] (* Robert G. Wilson v, Oct 11 2005 *) Cases[Range[160], n_ /; !SquareFreeQ[n]] (* Jean-François Alcover, Mar 21 2011 *) Select[Range@160, ! SquareFreeQ[#] &] (* Robert G. Wilson v, Jul 21 2012 *) Select[Range@160, PrimeOmega[#] > PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 02 2015 *) Select[Range[200], MoebiusMu[#] == 0 &] (* Alonso del Arte, Nov 07 2015 *)
-
PARI
{a(n)= local(m,c); if(n<=1,4*(n==1), c=1; m=4; while( c
Michael Somos, Apr 29 2005 */ -
PARI
for(n=1, 1e3, if(omega(n)!=bigomega(n), print1(n, ", "))) \\ Felix Fröhlich, Aug 13 2014
-
PARI
upto(n)=my(res = List()); forprime(p = 2, sqrtint(n), for(k = 1, n \ p^2, listput(res, k * p^2))); listsort(res, 1); res \\ David A. Corneth, Oct 25 2017
-
Python
from sympy.ntheory.factor_ import core def ok(n): return core(n, 2) != n print(list(filter(ok, range(1, 161)))) # Michael S. Branicky, Apr 08 2021
-
Python
from math import isqrt from sympy import mobius def A013929(n): def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 20 2024
Formula
A008966(a(n)) = 0. - Reinhard Zumkeller, Apr 22 2012
Sum_{n>=1} 1/a(n)^s = (zeta(s)*(zeta(2*s)-1))/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Charles R Greathouse IV, Sep 13 2013
phi(a(n)) > A003958(a(n)). - Juri-Stepan Gerasimov, Apr 09 2019
Extensions
More terms from Erich Friedman
More terms from Franz Vrabec, Aug 13 2005
Comments