A014106 a(n) = n*(2*n + 3).
0, 5, 14, 27, 44, 65, 90, 119, 152, 189, 230, 275, 324, 377, 434, 495, 560, 629, 702, 779, 860, 945, 1034, 1127, 1224, 1325, 1430, 1539, 1652, 1769, 1890, 2015, 2144, 2277, 2414, 2555, 2700, 2849, 3002, 3159, 3320, 3485, 3654, 3827, 4004, 4185, 4370
Offset: 0
Examples
a(5-1) = 44: The best approximation of sqrt(5^2-2) = sqrt(23) by x/d with d <= k is 24/5 for all k < 44, but sqrt(23) ~= 211/44 is the first improvement. - _Hugo Pfoertner_, Apr 30 2019
References
- Jolley, Summation of Series, Dover (1961).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..920
- Jeff Bowermaster, Loose Rectangular Spiral
- Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- Milan Janjic, Two Enumerative Functions
- L. J. Santharoubane, Cohomology of Heisenberg Lie algebras, Proc. Amer. Math. Soc. 87 (1983), 23-28.
- Leo Tavares, Illustration: Hex-tangles
- Leo Tavares, Illustration: Second Hex-tangles
- Leo Tavares, Illustration: Ob-tangles
- Leo Tavares, Illustration: Trap-tangles
- Eric Weisstein's World of Mathematics, Star Polygon
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(2*n+3): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
-
Maple
A014106 := proc(n) n*(2*n+3) ; end proc: # R. J. Mathar, Feb 13 2011 seq(k*(2*k+3), k=1..100); # Wesley Ivan Hurt, Jul 02 2013
-
Mathematica
Table[n (2 n + 3), {n, 0, 120}] (* Michael De Vlieger, Apr 02 2015 *) LinearRecurrence[{3,-3,1},{0,5,14},50] (* Harvey P. Dale, Jul 21 2023 *)
-
PARI
a(n)=2*n^2+3*n
-
PARI
\\ least denominator > n in best rational approximation of sqrt(n^2-2) for(n=2,47,for(k=n,oo,my(m=denominator(bestappr(sqrt(n^2-2),k)));if(m>n,print1(k,", ");break(1)))) \\ Hugo Pfoertner, Apr 30 2019
Formula
a(n) - 1 = A091823(n). - Howard A. Landman, Mar 28 2004
G.f.: x*(5 - x)/(1 - x)^3. - Paul Barry, Feb 27 2003
E.g.f: x*(5 + 2*x)*exp(x). - Michael Somos, Nov 06 2005
a(n) = a(n-1) + 4*n + 1, n > 0. - Vincenzo Librandi, Nov 19 2010
a(n) = 4*A000217(n) + n. - Bruno Berselli, Feb 11 2011
Sum_{n>=1} 1/a(n) = 8/9 -2*log(2)/3 = 0.4267907685155920.. [Jolley eq. 265]
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + log(2)/3 - Pi/6. - Amiram Eldar, Jul 03 2020
From Leo Tavares, Jan 27 2022: (Start)
a(n) = A000384(n+1) - 1. See Hex-tangles illustration.
a(n) = A014105(n) + n*2. See Second Hex-tangles illustration.
a(n) = 2*A002378(n) + n. See Ob-tangles illustration.
Comments