cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A140867 Start of the first run of exactly n integers in A014134.

Original entry on oeis.org

8, 33, 88, 132, 1265, 768, 2657, 11413, 8755, 50965, 8453, 57258, 124486, 609703, 791190, 955961, 826855, 984638, 2095061, 4196516, 5776666, 6481631, 22355042, 42972320, 11873562, 70956435, 47737822, 57344057, 57651771, 191061462
Offset: 1

Views

Author

David W. Wilson, Jan 05 2009

Keywords

Programs

  • PARI
    is_A014134(n)=for(k=0,sqrtint(n*2),issquare(n-k*(k+1)/2) && return);1
    /* length of run starting at n */
    rl(n)=local(t=n);while(is_A014134(n++),);n-t
    /* print [ k, a[k] ] as defined above */
    {s=0;for(n=1,10^6,is_A014134(n)|next;t=n;while(is_A014134(n++),);bittest(s,n-t)&next;s+=1<<(n-t);print1([n-t,t]","))}

Extensions

More terms and PARI code from M. F. Hasler, Jan 05 2009
a(19)-a(30) from Donovan Johnson, Feb 07 2009

A053614 Numbers that are not the sum of distinct triangular numbers.

Original entry on oeis.org

2, 5, 8, 12, 23, 33
Offset: 1

Views

Author

Jud McCranie, Mar 19 2000

Keywords

Comments

The Mathematica program first computes A024940, the number of partitions of n into distinct triangular numbers. Then it finds those n having zero such partitions. It appears that A024940 grows exponentially, which would preclude additional terms in this sequence. - T. D. Noe, Jul 24 2006, Jan 05 2009

Examples

			a(2) = 5: the 7 partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. Among those the distinct ones are 5, 4+1, 3+2. None contains all distinct triangular numbers.
12 is a term as it is not a sum of 1, 3, 6 or 10 taken at most once.
		

References

  • Joe Roberts, Lure of the Integers, The Mathematical Association of America, 1992, page 184, entry 33.
  • David Wells in "The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, page 94, states that "33 is the largest number that is not the sum of distinct triangular numbers".

Crossrefs

Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers)
Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers)
Cf. A001422, A121405 (corresponding sequences for square and pentagonal numbers)

Programs

  • Mathematica
    nn=100; t=Rest[CoefficientList[Series[Product[(1+x^(k*(k+1)/2)), {k,nn}], {x,0,nn(nn+1)/2}], x]]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *)

Formula

Complement of A061208.

Extensions

Entry revised by N. J. A. Sloane, Jul 23 2006

A014133 Sum of a square and a triangular number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 39, 40, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 65, 66, 67, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014134 (complement).

Programs

  • Maple
    isA014133 := proc(n)
        local c,t ;
        for c from 0 do
            t := c*(c+1)/2 ;
            if t > n then
                return false;
            end if;
            if issqr(n-t) then
                return true;
            end if;
        end do:
    end proc:
    for n from 0 to 100 do
        if isA014133(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Oct 11 2014
  • Mathematica
    With[{nn=20},Select[Union[Flatten[Outer[Plus,Range[0,nn]^2,Accumulate[ Range[ 0,nn]]]]], #<=(nn(nn+1))/2&]] (* Harvey P. Dale, Dec 29 2019 *)

Formula

{k: A101428(k) > 0} .- R. J. Mathar, Apr 28 2020

A141945 Primes congruent to 23 mod 25.

Original entry on oeis.org

23, 73, 173, 223, 373, 523, 673, 773, 823, 1123, 1223, 1373, 1423, 1523, 1723, 1823, 1873, 1973, 2273, 2423, 2473, 3023, 3323, 3373, 3623, 3673, 3823, 3923, 4073, 4273, 4373, 4423, 4523, 4673, 4723, 4973, 5023, 5273, 5323, 5573, 5623, 5923, 6073, 6173, 6323
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes with the last 2 decimal digits in {23, 73}. - Chai Wah Wu, Apr 29 2025

Crossrefs

Programs

A264101 Numbers that can't be represented as the sum of two squares, two triangular numbers, or a square and a triangular number.

Original entry on oeis.org

23, 33, 47, 62, 63, 86, 118, 134, 138, 143, 158, 167, 188, 195, 203, 204, 209, 223, 230, 243, 248, 275, 283, 294, 318, 323, 348, 368, 383, 385, 395, 398, 408, 411, 413, 418, 419, 426, 437, 440, 448, 454, 467, 473, 476, 489, 492, 503, 508, 518, 523, 558, 563, 566, 572, 608
Offset: 1

Views

Author

Alex Ratushnyak, Nov 03 2015

Keywords

Comments

Intersection of A014134, A020757, A022544.

Examples

			Since 22 = 16+6, because 16 is a square and 6 is a triangular number, 22 is not a term.
23 is a term because there is no representation as S+T or S1+S2 or T1+T2, where S, S1, S2 are squares, and T, T1, T2 are triangular numbers.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= [seq(i^2,i=0..floor(sqrt(N)))]: nS:= nops(S):
    T:= [seq(i*(i+1)/2, i=0..floor(sqrt(2*N)))]: nT:= nops(T):
    sort(convert({$1..N} minus {seq(seq(S[i]+S[j], j=1..i),i=1..nS),
    seq(seq(S[i]+T[j],i=1..nS),j=1..nT),
    seq(seq(T[i]+T[j],j=1..i),i=1..nT)}, list)); # Robert Israel, May 19 2020
  • Mathematica
    mx = 610; Complement[ Range@ mx, Union@ Flatten@ Table[{i^2 + j^2, i(i + 1)/2 + j^2, i(i + 1)/2 + j(j + 1)/2}, {i, 0, Sqrt[2 mx]}, {j, 0, Sqrt[2 mx]}]] (* Robert G. Wilson v, Nov 29 2015 *)

A231353 Least k>=0 such that n - k^2 is a triangular number, or -1 if no such k exists.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, -1, 3, 0, 1, 3, -1, 2, 0, 1, 4, -1, 2, -1, 0, 1, -1, 3, 2, 4, -1, 0, 1, 3, 4, 2, -1, -1, 5, 0, 1, -1, 6, 2, -1, 6, -1, 4, 0, 1, -1, -1, 2, 7, 6, 4, 5, 3, 0, 1, 6, -1, 2, -1, 4, -1, -1, 3, 8, 0, 1, -1, -1, 2, 4, 6, -1, 8, 3, -1, 7, 0, 1, 5, 6, 2
Offset: 0

Views

Author

Alex Ratushnyak, Nov 08 2013

Keywords

Comments

Indices of -1's: A014134.
Indices of 0's: A000217.
Indices of 1's: A000124.

Crossrefs

A231354 Least k such that n - triangular(k) is a square, or -1 if no such k exists.

Original entry on oeis.org

0, 0, 1, 2, 0, 1, 3, 2, -1, 0, 1, 4, 2, -1, 4, 3, 0, 1, -1, 2, -1, 6, 3, -1, 5, 0, 1, -1, 2, 7, 6, 3, 7, -1, -1, 4, 0, 1, -1, 2, 5, -1, 3, -1, 7, 8, 4, -1, -1, 0, 1, 5, 2, 7, 9, 3, 10, 6, -1, 4, -1, 8, -1, -1, 0, 1, 11, 2, -1, -1, 3, 10, 8, -1, 4, 11, -1, 7, 12, 5, 10, 0
Offset: 0

Views

Author

Alex Ratushnyak, Nov 08 2013

Keywords

Comments

Indices of -1's: A014134.
Indices of 0's: A000290.
Indices of 1's: A002522.

Crossrefs

Programs

  • Python
    import math
    for n in range(333):
      for k in range(1000000):
        t = n - k*(k+1)/2
        if t<0:
          print('-1', end=', ')
          break
        r = int(math.sqrt(t))
        if r*r==t:
          print(str(k), end=', ')
          break

A076769 Integers not expressible as the sum of a positive triangular number and a square.

Original entry on oeis.org

8, 9, 13, 18, 20, 23, 27, 33, 34, 38, 41, 43, 47, 48, 58, 60, 62, 63, 68, 69, 73, 76, 83, 86, 88, 89, 90, 93, 97, 98, 99, 108, 111, 112, 113, 118, 123, 125, 132, 133, 134, 135, 138, 139, 143, 144, 146, 148, 151, 158, 160, 163, 164, 167, 168, 173, 174, 177, 181, 182
Offset: 1

Views

Author

Jason Earls, Nov 14 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n)={for(k=1, sqrtint(2*n), if(issquare(n-binomial(k+1,2)), return(0))); 1} \\ Andrew Howroyd, Sep 18 2024

Extensions

Name clarified and offset changed by Andrew Howroyd, Sep 18 2024
Showing 1-8 of 8 results.