cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014283 a(n) = Fibonacci(n) - n^2.

Original entry on oeis.org

0, 0, -3, -7, -13, -20, -28, -36, -43, -47, -45, -32, 0, 64, 181, 385, 731, 1308, 2260, 3820, 6365, 10505, 17227, 28128, 45792, 74400, 120717, 195689, 317027, 513388, 831140, 1345308, 2177285, 3523489, 5701731, 9226240, 14929056, 24156448, 39086725, 63244465
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Vladeta Jovovic, Jan 08 2002 : (Start)
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) - n^2.
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x^2*(5*x - 3)/((1 - x)^3*(1 - x - x^2)). (End)
a(n) = Sum_{i=0..n} (i^2 - 4*i)*F(n-i) for F(n) the Fibonacci sequence A000045. - Greg Dresden, Jun 01 2022
a(n) = A000045(n) - A000290(n). - Alois P. Heinz, Apr 09 2025
E.g.f.: 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5) - exp(x)*x*(1 + x). - Stefano Spezia, Apr 10 2025