cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A187783 De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jan 05 2013

Keywords

Comments

From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)

Examples

			T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
		

Crossrefs

Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/column removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.

Programs

  • Magma
    [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
    
  • Mathematica
    T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
  • SageMath
    def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
    flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022

Formula

T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023

Extensions

Row m=0 prepended by Tilman Piesk, Oct 28 2014

A089759 Table T(n,k), 0<=k, 0<=n, read by antidiagonals, defined by T(n,k) = (k*n)! / (n!)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 24, 90, 20, 1, 1, 1, 120, 2520, 1680, 70, 1, 1, 1, 720, 113400, 369600, 34650, 252, 1, 1, 1, 5040, 7484400, 168168000, 63063000, 756756, 924, 1, 1, 1, 40320, 681080400, 137225088000, 305540235000, 11732745024, 17153136, 3432, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 08 2004; revised Jun 08 2005

Keywords

Comments

T(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1. - Alois P. Heinz, May 06 2013

Examples

			Row n=0: 1, 1,   1,      1,           1,               1, ... A000012
Row n=1: 1, 1,   2,      6,          24,             120, ... A000142
Row n=2: 1, 1,   6,     90,        2520,          113400, ... A000680
Row n=3: 1, 1,  20,   1680,      369600,       168168000, ... A014606
Row n=4: 1, 1,  70,  34650,    63063000,    305540235000, ... A014608
Row n=5: 1, 1, 252, 756756, 11732745024, 623360743125120, ... A014609
		

Crossrefs

Cf. A000680, A014606, A014608, A014609, A000984, A187783 (transposed version).
Main diagonal gives A034841.

Programs

  • Maple
    T:= (n, k)-> (k*n)!/(n!)^k:
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 16 2012
  • Mathematica
    T[n_, k_] := (k*n)!/(n!)^k; Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 19 2015 *)

Extensions

Corrected by Alois P. Heinz, Aug 16 2012

A236463 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(4*n+1,i) * binomial(k+4-i,4)^n, 0 <= k <= 4*(n-1).

Original entry on oeis.org

1, 1, 16, 36, 16, 1, 1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1, 1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1, 1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680
Offset: 1

Views

Author

Yahia Kahloune, Feb 01 2014

Keywords

Comments

In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,4,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 4 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020

Examples

			T(n,0) = 1;
T(n,1) = 5^n - (4*n+1);
T(n,2) = 15^n - (4*n+1)*5^n + C(4*n+1,2);
T(n,3) = 35^n - (4*n+1)*15^n + C(4*n+1,2)*5^n - C(4*n+1,3);
T(n,4) = 70^n - (4*n+1)*35^n + C(4*n+1,2)*15^n - C(4*n+1,3)*5^n + C(4*n+1,4).
Triangle T(n,k) begins:
1,
1, 16, 36, 16, 1;
1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1;
1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1;
1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680, 29066972368, 6501577152, 733059110, 37229920, 693960, 3104, 1;
1, 15600, 11000300, 1558185200, 75073622025, 1585757994496, 16938467955200, 99825129369600, 342907451401150, 710228619472800, 903546399077256, 710228619472800, 342907451401150, 99825129369600, 16938467955200, 1585757994496, 75073622025, 1558185200, 11000300, 15600, 1;
  ...
Example:
Sum_{i=1..n} C(3+i,4)^3 = C(n+4,13) + 112*C(n+5,13) + 1828*C(n+6,13) + 8464*C(n+7,13) + 13840*C(n+8,13) + 8464*C(n+9,13) + 1828*C(n+10,13) + 112*C(n+11,13) + C(+12,13).
C(n,4)^3 = C(n,12) + 112*C(n+1,12) + 1828*C(n+2,12) + 8464*C(n+3,12) + 13840*C(n+4,12) + 8464*C(n+5,12) + 1828*C(n+6,12) + 112*C(n+7,12) + C(n+8,12).
		

Crossrefs

Row sums are A014608.
Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, this sequence, A237202, A237252.
Sum_{i=1..n} binomial(3+i,4)^p for p=2..3 gives: A086023, A086024.

Programs

  • Mathematica
    b[k_, 4, p_] := Sum[(-1)^i*Binomial[4*p+1, i]*Binomial[k-i, 4]^p /. k -> 4+i, {i, 0, k-4}]; row[p_] := Table[b[k, 4, p], {k, 4, 4*p}]; Table[row[p], {p, 1, 6}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(4*n+1, i)*binomial(k+4-i, 4)^n)} \\ Andrew Howroyd, May 08 2020

Formula

Sum_{i=1..n} binomial(3+i,4)^p = Sum{k=0..4*(p-1)} T(p,k) * binomial(n+4+k, 4*p+1).
binomial(n,4)^p = Sum_{k=0..4*(p-1)} T(p,k) * binomial(n+k, 4*p).

Extensions

a(36) corrected by Vincenzo Librandi, Feb 14 2014
Edited by Andrew Howroyd, May 08 2020

A278074 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.

Original entry on oeis.org

1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 1,     70]
[0, 1,    990,     34650]
[0, 1,  16510,   2702700,    63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
		

Crossrefs

Cf. A014608 (diagonal), A243665 (row sums), A211212 (alternating row sums), A281480 (central coefficients).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3).
Cf. A327024 (refinement).

Programs

  • Maple
    P := proc(m,n) option remember; if n = 0 then 1 else
    add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end:
    for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od;
    # Alternatively:
    A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1));
    (4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 5 do A278074_row(n) od;
  • Mathematica
    With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
    Function[arg, CoefficientList[arg, t]] /@ % // Flatten
  • Sage
    # uses [P from A278073]
    def A278074_row(n): return list(P(4, n))
    for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020

Formula

E.g.f.: 1/(1-t*((cosh(x)+cos(x))/2-1)), nonzero terms.

A014609 a(n) = (5n)!/(5!^n).

Original entry on oeis.org

1, 1, 252, 756756, 11732745024, 623360743125120, 88832646059788350720, 28837919555681211870935040, 18975581770994682860770223800320, 23183587808948692737291767860055162880, 49120458506088132224064306071170476903628800
Offset: 0

Views

Author

BjornE (mdeans(AT)algonet.se)

Keywords

Comments

a(n) is also the constant term in product 1 <= i,j <= n, i different from j (1 - x_i/x_j)^5. - Sharon Sela (sharonsela(AT)hotmail.com), Feb 18 2002

References

  • G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, 1998.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,(5*n)!/120^n)

A060538 Square array read by antidiagonals of number of ways of dividing n*k labeled items into n labeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 20, 90, 24, 1, 70, 1680, 2520, 120, 1, 252, 34650, 369600, 113400, 720, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1, 3432, 17153136, 11732745024, 305540235000, 137225088000, 681080400, 40320, 1, 12870
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			       1        1        1        1
       2        6       20       70
       6       90     1680    34650
      24     2520   369600 63063000
		

Crossrefs

Subtable of A187783.
Rows include A000012, A000984, A006480, A008977, A008978 etc.
Columns include A000142, A000680, A014606, A014608, A014609 etc.
Main diagonal is A034841.

Programs

  • PARI
    T(n,k)=(n*k)!/k!^n;
    for(n=1, 6, for(k=1, 6, print1(T(n,k), ", ")); print) \\ Harry J. Smith, Jul 06 2009

Formula

T(n, k) = (nk)!/k!^n = T(n-1, k)*binomial(nk, k) = T(n-1, k)*A060539(n, k) = A060540(n, k)*A000142(k).

A266741 Number of words on {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,...,n,n,n,n} avoiding the pattern 12345.

Original entry on oeis.org

1, 1, 70, 34650, 63063000, 142951955371, 389426248416626, 1238402046254860022, 4454056622413300252928, 17668055644599543583018570, 75867559322054514745288107364, 347785237467609520037269752908904, 1684035818793607129226446293560872032
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:
F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.
F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.
The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.
Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:
F_{m} : F_{0} F_{1} F_{2} F_{3} F_{4}
x = 1: A000012 A000142 A000680 A014606 A014608 ... (m*n)!/m!^n
x = 0: -- A000012 A000364 A002115 A211212 ... m-alternating permutations of length m*n.
Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

Examples

			Triangle starts:
[n\k][    0        1        2       3     4  5  6]
--------------------------------------------------
[0][      1]
[1][      1,       0]
[2][      5,       1,       0]
[3][     61,      28,       1,      0]
[4][   1385,    1011,     123,      1,    0]
[5][  50521,   50666,   11706,    506,    1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
		

References

  • G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.
First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292604_row := proc(n) if n = 0 then return [1] fi;
    add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292604_row(n) od;
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
    F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
    row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
    Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    def A292604_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..6): print(A292604_row(n))

Formula

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

A292606 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).

Original entry on oeis.org

1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 26 2017

Keywords

Comments

See the comments in A292604.

Examples

			Triangle starts:
[n\k][          0            1          2       3   4   5]
--------------------------------------------------
[0] [           1]
[1] [           1,           0]
[2] [          69,           1,         0]
[3] [       33661,         988,         1,      0]
[4] [    60376809,     2669683,     16507,      1,  0]
[5] [288294050521, 17033188586, 212734266, 261626,  1,  0]
		

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} = A292605, F_{4} is this triangle.
First column: A211212. Row sums: A014608. Alternating row sums: A292607.
Cf. A181985.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292606_row := proc(n) if n = 0 then return [1] fi;
    add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292606_row(n) od;
  • Sage
    # uses[A278074_row from A278074]
    def A292606_row(n):
        if n == 0: return [1]
        L = A278074_row(n)
        S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..5): print(A292606_row(n))

Formula

F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1.

A327024 Ordered set partitions of the set {1, 2, ..., 4*n} with all block sizes divisible by 4, irregular triangle T(n, k) for n >= 0 and 0 <= k < A000041(n), read by rows.

Original entry on oeis.org

1, 1, 1, 70, 1, 990, 34650, 1, 3640, 12870, 2702700, 63063000, 1, 9690, 251940, 26453700, 187065450, 17459442000, 305540235000, 1, 21252, 1470942, 2704156, 154448910, 8031343320, 9465511770, 374796021600, 3975514943400, 231905038365000, 3246670537110000
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 4. For instance 4*P(4, .) = [[16], [12, 4], [8, 8], [8, 4, 4], [4, 4, 4, 4]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;    70]
[3] [1;   990;   34650]
[4] [1;  3640,   12870;  2702700;  63063000]
[5] [1;  9690,  251940; 26453700, 187065450; 17459442000; 305540235000]
[6] [1; 21252, 1470942,  2704156; 154448910,  8031343320,   9465511770;
     374796021600, 3975514943400; 231905038365000; 3246670537110000]
.
T(4, 1) = 3640 because [12, 4] is the integer partition 4*P(4, 1) in the canonical order and there are 1820 set partitions which have the shape [12, 4]. Finally, since the order of the sets is taken into account, one gets 2!*1820 = 3640.
		

Crossrefs

Row sums: A243665, alternating row sums: A211212, main diagonal: A014608, central column: A281480, by length: A278074.
Cf. A178803 (m=0), A133314 (m=1), A327022 (m=2), A327023 (m=3), this sequence (m=4).

Programs

  • Sage
    # uses[GenOrdSetPart from A327022]
    def A327024row(n): return GenOrdSetPart(4, n)
    for n in (0..6): print(A327024row(n))
Showing 1-10 of 24 results. Next