A011784
Levine's sequence. First construct a triangle as follows. Row 1 is {1,1}; if row n is {r_1, ..., r_k} then row n+1 consists of {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}; sequence consists of the final elements in each row.
Original entry on oeis.org
1, 2, 2, 3, 4, 7, 14, 42, 213, 2837, 175450, 139759600, 6837625106787, 266437144916648607844, 508009471379488821444261986503540, 37745517525533091954736701257541238885239740313139682, 5347426383812697233786139576220450142250373277499130252554080838158299886992660750432
Offset: 1
Lionel Levine (levine(AT)ultranet.com)
{1,1}, {1,2}, {1,1,2}, {1,1,2,3}, {1,1,1,2,2,3,4}, {1,1,1,1,2,2,2,3,3,4,4,5,6,7}.
- Richard K. Guy, Unsolved Problems in Number Theory, Section E25.
- R. K. Guy, What's left?, in The Edge of the Universe: Celebrating Ten Years of Math Horizons, Deanna Haunsperger, Stephen Kennedy (editors), 2006, p. 81.
- Johan Claes, Table of n, a(n) for n = 1..19
- Johnson Ihyeh Agbinya, Computer Board Games of Africa, (2004), see pages 113-114.
- R. K. Guy, What's left?, Math Horizons, Vol. 5, No. 4 (April 1998), pp. 5-7.
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^(-1), arXiv:2402.06618 [math.CO], 2024. See pp. 16-17.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane and Brady Haran, The Levine Sequence, Numberphile video (2021)
- N. J. A. Sloane, Colin Mallows, and Bjorn Poonen, Discussion of A011784. [Scans of pages 150-155 and 164 of my notebook "Lattices 77", from June-July 1997.]
-
a011784 = last . a012257_row -- Reinhard Zumkeller, Aug 11 2014
-
(* This script is not suitable for computing more than 11 terms *) nmax = 11; ro = {{2, 1}}; a[1]=1; For[n=2, n <= nmax, n++, ro = Transpose[{Table[#[[2]], {#[[1]]}]& /@ Reverse[ro] // Flatten, Range[Total[ro[[All, 1]]]]}]; Print["a(", n, ") = ", a[n] = ro // Last // Last]]; Array[a, nmax] (* Jean-François Alcover, Feb 25 2016 *)
NestList[Flatten@ MapIndexed[ConstantArray[First@ #2, #1] &, Reverse@ #] &, {1, 1}, 10][[All, -1]] (* Michael De Vlieger, Jul 12 2017, same limitations as above *)
-
# This works, as with the others, up to 11.
lev2 <- function(x = 10, levprev= NULL){
x <- floor(x[1])
# levlen is the RLE values
levterm <-rep(1,x)
levlen[[1]] <- 2
for ( jl in 2:x) {
rk <- length(levlen[[jl-1]])
for (jrk in 1: rk) {
levlen[[jl]] <- c(levlen[[jl]], rep(jrk, times = levlen[[jl-1]][rk+1-jrk])) }
levterm[jl] <- length(levlen[[jl]]) }
return(invisible(list(levlen=levlen, levterm = levterm) ) ) }
# Carl Witthoft, Apr 01 2021
a(17) (an 85-digit number) from
Johan Claes, Jun 18 2004
a(18) (a 137-digit number) from
Johan Claes, Aug 19 2008
A210949
E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(A(x))).
Original entry on oeis.org
1, 1, 4, 29, 309, 4383, 78121, 1684706, 42801222, 1255919755, 41918624013, 1572257236114, 65619165625383, 3022617826829288, 152615633802149416, 8397224009015443509, 500957609480739613321, 32261529179806961067634, 2234133327582388824135291
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 29*x^4/4! + 309*x^5/5! + 4383*x^6/6! +...
Let G(x) = Integral A(x) dx, then A(x) = x + G(A(x)) where
G(x) = x^2/2! + x^3/3! + 4*x^4/4! + 29*x^5/5! + 309*x^6/6! + 4383*x^7/7! +...
Also,
A(x) = x + G(x) + d/dx G(x)^2/2! + d^2/dx^2 G(x)^3/3! + d^3/dx^3 G(x)^4/4! +...
log(A(x)/x) = G(x)/x + d/dx G(x)^2/(2!*x) + d^2/dx^2 G(x)^3/(3!*x) + d^3/dx^3 G(x)^4/(4!*x) +...
By definition, A'(x) = 1/(1 - A(A(x))), where
A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 101*x^4/4! + 1313*x^5/5! + 22235*x^6/6! + 466356*x^7/7! + 11710760*x^8/8! +...
Cf.
A277410,
A067146,
A279843,
A279844,
A279845,
A280570,
A280571,
A280572,
A280573,
A280574,
A280575.
-
m = 20; A[_] = 0;
Do[A[x_] = InverseSeries[Integrate[1 - A[x], x] + O[x]^m], {m}];
CoefficientList[A[x], x] * Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n)=local(A=x,G);for(i=1,n,G=intformal(A+x*O(x^n));A=serreverse(x-G));n!*polcoeff(A, n)}
-
{a(n)=local(A=x,G);for(i=1,n,G=intformal(A+x*O(x^n));A=x+subst(G,x,A+x*O(x^n))); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x,G);for(i=0,n,G=intformal(A+x*O(x^n)); A=x+sum(m=1, n, Dx(m-1, G^m/m!))); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x,G);for(i=0,n,G=intformal(A+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, G^m/x/m!)+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{a(n) = local(A=x); for(i=1,n, A = serreverse(intformal(1-A +x*O(x^n)))); n!*polcoeff(A,n)}
for(n=1, 25, print1(a(n), ", "))
A014621
Triangle of numbers arising from analysis of Levine's sequence A011784.
Original entry on oeis.org
1, 1, 3, 1, 15, 10, 3, 1, 105, 105, 55, 30, 10, 3, 1, 945, 1260, 910, 630, 350, 168, 76, 30, 10, 3, 1, 10395, 17325, 15750, 12880, 9135, 5789, 3381, 1806, 910, 434, 196, 76, 30, 10, 3, 1, 135135, 270270, 294525, 275275, 228375, 172200, 120960, 78519, 48006, 28336, 16065, 8609, 4461, 2166, 1018, 470, 196, 76, 30, 10, 3, 1
Offset: 1
Triangle begins:
1;
1;
3, 1;
15, 10, 3, 1;
105, 105, 55, 30, 10, 3, 1;
945, 1260, 910, 630, 350, 168, 76, 30, 10, 3, 1;
10395, 17325, 15750, 12880, 9135, 5789, 3381, 1806, 910, 434, 196, 76, 30,
10, 3, 1;
135135, 270270, 294525, 275275, 228375, 172200, 120960, 78519, 48006, 28336, 16065, 8609, 4461, 2166, 1018, 470, 196, 76, 30, 10, 3, 1;
2027025, 4729725, 5990985, 6276270, 5853925, 4996530, 3999765, 2997225, 2115960, 1432725, 938644, 593646, 364551, 215940, 123639, 68886, 37276, 19485, 9959, 4911, 2301, 1063, 470, 196, 76, 30, 10, 3, 1;
- Roland Miyamoto, Rows n = 1..50 of triangle, flattened (rows n = 1..6 from _Colin Mallows_)
- Roland Miyamoto, Comments on A014621, Oct 14 2022.
- Roland Miyamoto and J. W. Sander, Solving the iterative differential equation -gamma*g' = g^{-1}, in: H. Maier, J. & R. Steuding (eds.), Number Theory in Memory of Eduard Wirsing, Springer, 2023, pp. 223-236, alternative link.
- Roland Miyamoto, Python3 program a014621.py implementing below formulae.
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^(-1), arXiv:2402.06618 [math.CO], 2024.
A144006
Triangle, read by rows of coefficients of x^n*y^k for k=0..n(n-1)/2 for n>=0, defined by e.g.f.: A(x,y) = 1 + Series_Reversion( Integral A(-x*y,y) dx ), with leading zeros in each row suppressed.
Original entry on oeis.org
1, 1, 1, 3, -1, 15, -10, 3, -1, 105, -105, 55, -30, 10, -3, 1, 945, -1260, 910, -630, 350, -168, 76, -30, 10, -3, 1, 10395, -17325, 15750, -12880, 9135, -5789, 3381, -1806, 910, -434, 196, -76, 30, -10, 3, -1, 135135, -270270, 294525, -275275, 228375
Offset: 0
Triangle begins (without suppressing leading zeros):
1;
1;
0, 1;
0,0, 3, -1;
0,0,0, 15, -10, 3, -1;
0,0,0,0, 105, -105, 55, -30, 10, -3, 1;
0,0,0,0,0, 945, -1260, 910, -630, 350, -168, 76, -30, 10, -3, 1;
0,0,0,0,0,0, 10395, -17325, 15750, -12880, 9135, -5789, 3381, -1806, 910, -434, 196, -76, 30, -10, 3, -1;
0,0,0,0,0,0,0, 135135, -270270, 294525, -275275, 228375, -172200, 120960, -78519, 48006, -28336, 16065, -8609, 4461, -2166, 1018, -470, 196, -76, 30, -10, 3, -1; ...
-
{T(n,k)=local(A=1+x*O(x^n)); for(i=0,n,A=1+serreverse(intformal(subst(A,x,-x*y))));n!*polcoeff(polcoeff(A,n,x),k,y)}
-
#This is only correct if the observation in the comment from 2024/08/20 is true.
def T(n,k):
if 0 <= n <= 1:
return 1 if k == 0 else 0
c = {(-1,):1} #Polynomial in infinitely many variables (function iterates)
for _ in range(n-1):
cnext = {}
for key, value in c.items():
key += (0,)
for i, ni in enumerate(key):
term = tuple(nj-2 if j==i else nj-1 if j<=i+1 else nj
for j,nj in enumerate(key))
cnext[term] = cnext.get(term,0) + value*ni
if cnext[term] == 0:
del cnext[term]
c = cnext
pairs = {} #Reduction to single variable (evaluation at fixpoint)
for key, value in c.items():
s = -sum(key)
pairs[s] = pairs.get(s,0) + value
_, row = zip(*sorted(pairs.items())) #Coefficients
if 0 <= k-n+1 < len(row): #Correcting number of leading 0s
return (-1)**(n+k+1)*abs(row[k-n+1]) #Correcting signs
else:
return 0
# Lucas Larsen, Aug 22 2024
Showing 1-4 of 4 results.
Comments