A014635 a(n) = 2*n*(4*n - 1).
0, 6, 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770, 2016, 2278, 2556, 2850, 3160, 3486, 3828, 4186, 4560, 4950, 5356, 5778, 6216, 6670, 7140, 7626, 8128, 8646, 9180, 9730, 10296, 10878, 11476, 12090, 12720, 13366, 14028, 14706
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..880
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Illustration: Diamond Cut Hexagons
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n*(4*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
-
Maple
[seq(binomial(4*n,2),n=0..43)]; # Zerinvary Lajos, Jan 02 2007
-
Mathematica
s=0;lst={s};Do[s+=n++ +6;AppendTo[lst, s], {n, 0, 7!, 16}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *) Table[2*n*(4*n - 1), {n,0,50}] (* G. C. Greubel, Jul 18 2017 *) PolygonalNumber[6,Range[0,90,2]] (* or *) LinearRecurrence[{3,-3,1},{0,6,28},50] (* Harvey P. Dale, Jan 21 2023 *)
-
PARI
a(n)=2*n*(4*n-1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = C(4*n,2), n>=0. - Zerinvary Lajos, Jan 02 2007
O.g.f.: 2*x*(3+5*x)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = 8*n^2 - 2*n. - Omar E. Pol, May 07 2008
a(n) = a(n-1) + 16*n - 10 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (8*x^2 + 6*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=1} 1/a(n) = 3*log(2)/2 - Pi/4.
Sum_{n>=1} (-1)^n / a(n) = log(2)/2 + log(1+sqrt(2))/sqrt(2) - Pi / 2^(3/2). (End)
Extensions
More terms from Erich Friedman
Comments