cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014635 a(n) = 2*n*(4*n - 1).

Original entry on oeis.org

0, 6, 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770, 2016, 2278, 2556, 2850, 3160, 3486, 3828, 4186, 4560, 4950, 5356, 5778, 6216, 6670, 7140, 7626, 8128, 8646, 9180, 9730, 10296, 10878, 11476, 12090, 12720, 13366, 14028, 14706
Offset: 0

Views

Author

Keywords

Comments

Even hexagonal numbers.
Number of edges in the join of two complete graphs of order 3n and n, K_3n * K_n - Roberto E. Martinez II, Jan 07 2002
Bisection of A000384. Also, this sequence arises from reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the triangular numbers A000217. Perfect numbers are members of this sequence because a(A134708(n)) = A000396(n). Also, positive members are a bisection of A139596. - Omar E. Pol, May 07 2008

Crossrefs

Programs

Formula

a(n) = C(4*n,2), n>=0. - Zerinvary Lajos, Jan 02 2007
O.g.f.: 2*x*(3+5*x)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = 8*n^2 - 2*n. - Omar E. Pol, May 07 2008
a(n) = a(n-1) + 16*n - 10 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (8*x^2 + 6*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=1} 1/a(n) = 3*log(2)/2 - Pi/4.
Sum_{n>=1} (-1)^n / a(n) = log(2)/2 + log(1+sqrt(2))/sqrt(2) - Pi / 2^(3/2). (End)
a(n) = A154105(n-1) - A016754(n-1). - Leo Tavares, May 02 2023

Extensions

More terms from Erich Friedman