cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015440 a(n) = a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 6, 11, 41, 96, 301, 781, 2286, 6191, 17621, 48576, 136681, 379561, 1062966, 2960771, 8275601, 23079456, 64457461, 179854741, 502142046, 1401415751, 3912125981, 10919204736, 30479834641, 85075858321, 237475031526, 662854323131, 1850229480761, 5164501096416
Offset: 0

Views

Author

Keywords

Comments

Original name: Generalized Fibonacci numbers.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 6*a(n-2) equals the number of 6-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 3, 6, 6, 1, 6, 21, 12, 18, 3, 40, 6, 56, 21, 6, 24, 16, 18, 360, 6, .... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Jan 02 2024: (Start)
This sequence {a(n-1)}, with a(-1) = 0, appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with A(n) = A365824(n), as phi21^n = A(n) + a(n-1)*phi21(n), for n >= 0.
Limit_{n->oo} a(n)/a(n-1) = phi21. (End)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 5*a(n-2).
a(n) = (( (1+sqrt(21))/2 )^(n+1) - ( (1-sqrt(21))/2 )^(n+1))/sqrt(21).
a(n) = Sum_{k=0..ceiling(n/2)} 5^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
G.f.: 1/(1 - x - 5x^2). - R. J. Mathar, Sep 03 2008
a(n) = Sum_{k=0..n} A109466(n,k)*(-5)^(n-k). - Philippe Deléham, Oct 26 2008
From Jeffrey R. Goodwin, May 28 2011: (Start)
A special case of a more general class of Lucas sequences given by
U(n) = U(n-1) + (4^(m-1)-1)/3 U(n-2).
U(n) = (( (1+sqrt((4^(m)-1)/3))/2 )^(n+1) - ( (1-sqrt((4^(m)-1)/3))/2 )^(n+1))/sqrt((4^(m)-1)/3). Fix m = 2 to get the formula for the Fibonacci sequence, fix m = 3 to get the formula for a(n). (End)
G.f.: G(0)/(2-x), where G(k)= 1 + 1/(1 - x*(21*k-1)/(x*(21*k+20) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 5*x^2 + (k+2)*x - x*(k+1 + 5*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
a(n) = (Sum_{k=1..n+1, k odd} binomial(n+1,k)*21^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
With an initial 0 prepended, the sequence [0, 1, 1, 6, 11, 41, 96, ...] satisfies the congruences a(n*p^k) == (3|p)*(7|p)*a(n*p^(k-1)) (mod p^k) for positive integers k and n and all primes p, where (n|p) denotes the Legendre symbol. See Young, Theorem 1, Corollary 1(i). - Peter Bala, Dec 28 2022
a(n) = sqrt(-5)^(n-1)*S(n-1,1/sqrt(-5)), for n >= 0, with the Chebyshev polynomial S(n, x) (see A049310). - Wolfdieter Lang, Nov 17 2023
From Peter Bala, Jun 27 2025: (Start)
The following products telescope:
Product_{k >= 0} (1 + 5^k/a(2*k+1)) = 1 + sqrt(21).
Product_{k >= 1} (1 - 5^k/a(2*k+1)) = 1/22 * (1 + sqrt(21)).
Product_{k >= 0} (1 + (-5)^k/a(2*k+1)) = (1/21) * (21 + sqrt(21)).
Product_{k >= 1} (1 - (-5)^k/a(2*k+1)) = (1/22) * (21 + sqrt(21)). (End)
E.g.f.: exp(x/2)*(sqrt(21)*cosh(sqrt(21)*x/2) + sinh(sqrt(21)*x/2))/sqrt(21). - Stefano Spezia, Jul 04 2025