A015565 a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.
0, 1, 7, 57, 455, 3641, 29127, 233017, 1864135, 14913081, 119304647, 954437177, 7635497415, 61083979321, 488671834567, 3909374676537, 31274997412295, 250199979298361, 2001599834386887, 16012798675095097, 128102389400760775, 1024819115206086201, 8198552921648689607
Offset: 0
Examples
G.f. = x + 7*x^2 + 57*x^3 + 455*x^4 + 3641*x^5 + 29127*x^6 + 233017*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, and Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Dale Gerdemann, Fractal generated from (7,8) recursion, YouTube Video, Dec 5, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7,8).
Crossrefs
Programs
-
Magma
[Round(8^n/9): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
Maple
seq(round(8^n/9),n=0..25); # Mircea Merca, Dec 28 2010
-
Mathematica
k=0;lst={k};Do[k=8^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) LinearRecurrence[{7,8},{0,1},30] (* Harvey P. Dale, Mar 04 2016 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-7*x-8*x^2))) \\ G. C. Greubel, Dec 30 2017
-
Sage
[lucas_number1(n,7,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Formula
From Paul Barry, Apr 09 2003: (Start)
a(n) = (8^n - (-1)^n)/9.
a(n) = J(3*n)/3 = A001045(3*n)/3. (End)
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 8^(n-1) - a(n-1).
G.f.: x/(1-7*x-8*x^2). (End)
a(n) = round(8^n/9). - Mircea Merca, Dec 28 2010
From Peter Bala, May 31 2024: (Start)
G.f: A(x) = x/(1 - x^2) o x/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A054878.
The black diamond product A(x) o A(x) is the g.f. for the number of walks of length n between any two distinct nodes of the complete graph K_81.
Row 8 of A062160. (End)
E.g.f.: exp(-x)*(exp(9*x) - 1)/9. - Elmo R. Oliveira, Aug 17 2024
Comments