cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016064 Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).

Original entry on oeis.org

1, 3, 13, 51, 193, 723, 2701, 10083, 37633, 140451, 524173, 1956243, 7300801, 27246963, 101687053, 379501251, 1416317953, 5285770563, 19726764301, 73621286643, 274758382273, 1025412242451, 3826890587533, 14282150107683, 53301709843201, 198924689265123, 742397047217293
Offset: 0

Views

Author

Keywords

Comments

Least side in a triangle with integer sides (m, m+1, m+2) (m >= 1) and integer area. The degenerate triangle with sides (1,2,3) is included.
Also describes triangles whose sides are consecutive integers and in which the inscribed circle has an integer radius. - Harvey P. Dale, Dec 28 2000 [Then, the length of this inradius is A001353(n). - Bernard Schott, Mar 21 2023]
Equivalently, positive integers m such that (3/16)*m^4 + (3/4)*m^3 + (3/8)*m^2 - (3/4)*m - 9/16 is a square (A000290), a direct result of Heron's formula. - Rick L. Shepherd, Sep 04 2005
"The problem is to find the sides of a triangle that shall have the values n, n + 1, and n + 2 and such that the perpendicular upon the longest side from the opposite vertex shall be rational. Nakane solves it as follows..." (Smith and Mikami, 2004). - Jonathan Sondow, May 09 2013
For n >= 1 all terms are congruent to {1,3} mod 10. Among first 100 terms there are 6 prime numbers: 3, 13, 193, 37633, 7300801, 1416317953. - Zak Seidov, Jun 14 2018
n > 1 is in this sequence if and only if the triangle with sides 4, n, n+2 has integer area (compare with A072221 for sides 3, n, n+1). - Michael Somos, May 11 2019
a(0) = 1 corresponds to the degenerate triangle [1,2,3], with area = 0. - Wesley Ivan Hurt, May 20 2020
Since this is a list it should really have offset 1, but that would require a large number of changes. - N. J. A. Sloane, Feb 04 2021
Least distance from centroid of a triangle to vertices, distances being m, m+1, m+2 and triangle area being a nonnegative integer. - Alexandru Petrescu, Feb 28 2023
Then, in this case, with a(n) = m, the corresponding area of this triangle is 3 * A011945(n+1). - Bernard Schott, Mar 21 2023

Examples

			G.f. = 1 + 3*x + 13*x^2 + 51*x^3 + 193*x^4 + 723*x^5 + 2701*x^6 + ... - _Michael Somos_, May 11 2019
		

References

  • Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters) A001353 (inradius).
Cf. A003500 (middle side lengths), this sequence (smallest side lengths), A335025 (largest side lengths).
Cf. A001353, A019973 (2 + sqrt(3)), A102341, A103974, A103975.
Cf. A072221.

Programs

  • Magma
    I:=[1,3,13]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)+2: n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,13},26] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1 - 2 x + 3 x^2) / (1 - 5 x + 5 x^2 - x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2018 *)
    a[ n_] := 2 ChebyshevT[n, 2] - 1; (* Michael Somos, May 11 2019 *)
  • PARI
    for(a=1,10^9, b=a+1; c=a+2; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) \\ Rick L. Shepherd, Feb 18 2007
    
  • PARI
    a(n)=if(n<1,1,-1+ceil((2+sqrt(3))^(n))) \\ Ralf Stephan
    
  • PARI
    is(n)=issquare(3*n^2+6*n-9) \\ Charles R Greathouse IV, May 16 2014
    
  • PARI
    {a(n) = 2 * polchebyshev(n, 1, 2) - 1}; /* Michael Somos, May 11 2019 */
    

Formula

a(n) = 3 + floor((2 + sqrt(3))*a(n-1)), n >= 3. - Rick L. Shepherd, Sep 04 2005
From Paul Barry, Feb 17 2004: (Start)
a(n) = 4*a(n-1) - a(n-2) + 2.
a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n - 1.
a(n) = 2*A001075(n) - 1.
G.f.: (1 - 2*x + 3*x^3)/((1 - x)*(1 - 4*x + x^2)) = (1 - 2*x + 3*x^2)/(1 - 5*x + 5*x^2 - x^3). (End)
For n >= 1, a(n) = ceiling((2 + sqrt(3))^n) - 1.
a(n) = A003500(n) - 1. - T. D. Noe, Jun 17 2004
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 3*x^2) )^n. - Peter Bala, Jun 23 2015
E.g.f.: exp((2 + sqrt(3))*x) + exp((2 - sqrt(3))*x) - exp(x). - Franck Maminirina Ramaharo, Nov 12 2018
a(n) = a(-n) for all integer n. - Michael Somos, May 11 2019

Extensions

More terms from Rick L. Shepherd, Feb 18 2007
Definition revised by N. J. A. Sloane, Feb 04 2021