A016064 Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).
1, 3, 13, 51, 193, 723, 2701, 10083, 37633, 140451, 524173, 1956243, 7300801, 27246963, 101687053, 379501251, 1416317953, 5285770563, 19726764301, 73621286643, 274758382273, 1025412242451, 3826890587533, 14282150107683, 53301709843201, 198924689265123, 742397047217293
Offset: 0
Examples
G.f. = 1 + 3*x + 13*x^2 + 51*x^3 + 193*x^4 + 723*x^5 + 2701*x^6 + ... - _Michael Somos_, May 11 2019
References
- Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (first 100 terms from Zak Seidov)
- David Eugene Smith and Yoshio Mikami, A history of Japanese mathematics, Dover, 2004, p. 168.
- Eric Weisstein's World of Mathematics, Heronian Triangle.
- Wikipedia, Heronian triangle.
- Index entries for linear recurrences with constant coefficients, signature (5,-5,1).
Crossrefs
Programs
-
Magma
I:=[1,3,13]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)+2: n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
-
Mathematica
LinearRecurrence[{5,-5,1},{1,3,13},26] (* Ray Chandler, Jan 27 2014 *) CoefficientList[Series[(1 - 2 x + 3 x^2) / (1 - 5 x + 5 x^2 - x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2018 *) a[ n_] := 2 ChebyshevT[n, 2] - 1; (* Michael Somos, May 11 2019 *)
-
PARI
for(a=1,10^9, b=a+1; c=a+2; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) \\ Rick L. Shepherd, Feb 18 2007
-
PARI
a(n)=if(n<1,1,-1+ceil((2+sqrt(3))^(n))) \\ Ralf Stephan
-
PARI
is(n)=issquare(3*n^2+6*n-9) \\ Charles R Greathouse IV, May 16 2014
-
PARI
{a(n) = 2 * polchebyshev(n, 1, 2) - 1}; /* Michael Somos, May 11 2019 */
Formula
a(n) = 3 + floor((2 + sqrt(3))*a(n-1)), n >= 3. - Rick L. Shepherd, Sep 04 2005
From Paul Barry, Feb 17 2004: (Start)
a(n) = 4*a(n-1) - a(n-2) + 2.
a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n - 1.
a(n) = 2*A001075(n) - 1.
G.f.: (1 - 2*x + 3*x^3)/((1 - x)*(1 - 4*x + x^2)) = (1 - 2*x + 3*x^2)/(1 - 5*x + 5*x^2 - x^3). (End)
For n >= 1, a(n) = ceiling((2 + sqrt(3))^n) - 1.
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 3*x^2) )^n. - Peter Bala, Jun 23 2015
E.g.f.: exp((2 + sqrt(3))*x) + exp((2 - sqrt(3))*x) - exp(x). - Franck Maminirina Ramaharo, Nov 12 2018
a(n) = a(-n) for all integer n. - Michael Somos, May 11 2019
Extensions
More terms from Rick L. Shepherd, Feb 18 2007
Definition revised by N. J. A. Sloane, Feb 04 2021
Comments