A016945 a(n) = 6*n+3.
3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315, 321, 327
Offset: 0
Links
- Friedrich L. Bauer, Der (ungerade) Collatz-Baum, Informatik Spektrum 31 (Springer, April 2008), pp. 379-384.
- Milan Janjic, Two Enumerative Functions.
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Dennis P. Walsh, The correlation for a power curve on nonnegative support.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Index entries for sequences related to 3x+1 (or Collatz) problem.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 3*(1+2*n)); # G. C. Greubel, Sep 18 2019
-
Haskell
a016945 = (+ 3) . (* 6) a016945_list = [3, 9 ..] -- Wesley Ivan Hurt, Sep 29 2013
-
Magma
[6*n+3 : n in [0..60]]; // Wesley Ivan Hurt, Sep 29 2013
-
Maple
seq(6*n+3, n=0..60); # Dennis P. Walsh, Aug 20 2013 A016945:=n->6*n+3; # Wesley Ivan Hurt, Sep 29 2013
-
Mathematica
Range[3, 350, 6] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) Table[6n+3, {n, 0, 60}] (* Wesley Ivan Hurt, Sep 29 2013 *) LinearRecurrence[{2, -1}, {3, 9}, 55] (* Ray Chandler, Jul 17 2015 *) CoefficientList[Series[3(1+x)/(1-x)^2, {x, 0, 60}], x] (* Robert G. Wilson v, Dec 14 2016 *)
-
Maxima
makelist(6*n+3, n, 0, 60); /* Wesley Ivan Hurt, Sep 29 2013 */
-
PARI
{a(n) = 6*n + 3} \\ Wesley Ivan Hurt, Sep 29 2013
-
PARI
x='x+O('x^60); Vec(3*(1+x)/(1-x)^2) \\ Altug Alkan, Apr 08 2016
-
Sage
[3*(1+2*n) for n in (0..60)] # G. C. Greubel, Sep 18 2019
Formula
a(n) = 3*(2*n + 1) = 3*A005408(n), odd multiples of 3.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
a(n) = 12*n - a(n-1) for n>0, a(0)=3. - Vincenzo Librandi, Nov 20 2010
G.f.: 3*(1+x)/(1-x)^2. - Mario C. Enriquez, Dec 14 2016
E.g.f.: 3*(1 + 2*x)*exp(x). - G. C. Greubel, Sep 18 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/12 (A019679). - Amiram Eldar, Dec 10 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)/2 (A010503).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(3/2) (A115754). (End)
a(n) = (n+2)^2 - (n-1)^2. - Alexander Yutkin, Mar 15 2025
Comments