A017281 a(n) = 10*n + 1.
1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 411, 421, 431, 441, 451, 461, 471, 481, 491, 501, 511, 521, 531
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Crossed Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 10*n+1 ); # G. C. Greubel, Sep 18 2019
-
Haskell
a017281 = (+ 1) . (* 10) a017281_list = [1,11..] -- Reinhard Zumkeller, Apr 16 2012
-
Magma
[10*n+1 : n in [0..60]]; // Zaki Khandaker, May 16 2015
-
Maple
A017281:=n->10*n + 1; seq(A017281(n), n=0..80); # Wesley Ivan Hurt, Jan 29 2014
-
Mathematica
f[n_] := FromDigits[IntegerDigits[n^2, n + 1]]; Array[f, 60] (* Robert G. Wilson v, Apr 14 2009 *) Range[1, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *) (* From Eric W. Weisstein, Nov 29 2017: (Start) *) Table[10n+1, {n, 0, 60}] 10*Range[0, 60] + 1 LinearRecurrence[{2, -1}, {11, 21}, {0, 60}] CoefficientList[Series[(1+9x)/(1-x)^2, {x, 0, 60}], x] (* End *)
-
PARI
Vec((1+9*x)/(1-x)^2 + O(x^80)) \\ Michel Marcus, Jun 17 2015
-
Sage
[10*n+1 for n in (0..60)] # G. C. Greubel, Sep 18 2019
Formula
G.f.: (1+9*x)/(1-x)^2.
a(n) = 20*n - a(n-1) - 8, with a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2), for n > 2. - Wesley Ivan Hurt, Jun 17 2015
E.g.f.: (1 + 10*x)*exp(x). - G. C. Greubel, Sep 18 2019
Comments