cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017485 a(n) = 11*n + 8.

Original entry on oeis.org

8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 140, 151, 162, 173, 184, 195, 206, 217, 228, 239, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360, 371, 382, 393, 404, 415, 426, 437, 448, 459, 470, 481, 492, 503, 514, 525, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

a(n) = A125199(n+1,3) for n>1. - Reinhard Zumkeller, Nov 24 2006

Crossrefs

Powers of the form (11*n+8)^m: this sequence (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

Formula

a(n) = 22*n + 5 - a(n-1), with n>0, a(0)=8. - Vincenzo Librandi, Dec 24 2010
From Colin Barker, Oct 05 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (8 + 3*x)/(1-x)^2. (End)
E.g.f.: (8 + 11*x)*exp(x). - G. C. Greubel, Sep 21 2019

A017486 a(n) = (11*n + 8)^2.

Original entry on oeis.org

64, 361, 900, 1681, 2704, 3969, 5476, 7225, 9216, 11449, 13924, 16641, 19600, 22801, 26244, 29929, 33856, 38025, 42436, 47089, 51984, 57121, 62500, 68121, 73984, 80089, 86436, 93025, 99856, 106929, 114244, 121801, 129600, 137641, 145924, 154449, 163216, 172225, 181476, 190969, 200704
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), this sequence (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

Formula

From G. C. Greubel, Sep 21 2019: (Start)
G.f.: (64 + 169*x + 9*x^2)/(1-x)^3.
E.g.f.: (64 + 297*x + 121*x^2)*exp(x). (End)

A017487 a(n) = (11*n + 8)^3.

Original entry on oeis.org

512, 6859, 27000, 68921, 140608, 250047, 405224, 614125, 884736, 1225043, 1643032, 2146689, 2744000, 3442951, 4251528, 5177717, 6229504, 7414875, 8741816, 10218313, 11852352, 13651919, 15625000, 17779581, 20123648, 22665187, 25412184, 28372625, 31554496, 34965783, 38614472, 42508549
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), this sequence (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

Formula

From G. C. Greubel, Sep 21 2019: (Start)
G.f.: (512 + 4811*x + 2636*x^2 + 27*x^3)/(1-x)^4.
E.g.f.: (512 + 6347*x + 6897*x^2 + 1331*x^3)*exp(x). (End)

A017489 a(n) = (11*n + 8)^5.

Original entry on oeis.org

32768, 2476099, 24300000, 115856201, 380204032, 992436543, 2219006624, 4437053125, 8153726976, 14025517307, 22877577568, 35723051649, 53782400000, 78502725751, 111577100832, 154963892093, 210906087424, 281950621875, 370967703776, 481170140857, 616132666368
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), this sequence (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (32768 +2279491*x +9934926*x^2 +6542326*x^3 +536366*x^4 +243*x^5 )/(1-x)^6.
E.g.f.: (32768 +2443331*x +9690285*x^2 +8391955*x^3 +2196150*x^4 +161051* x^5)*exp(x). (End)

A017490 a(n) = (11*n + 8)^6.

Original entry on oeis.org

262144, 47045881, 729000000, 4750104241, 19770609664, 62523502209, 164206490176, 377149515625, 782757789696, 1500730351849, 2699554153024, 4608273662721, 7529536000000, 11853911588401, 18075490334784, 26808753332089, 38806720086016, 54980371265625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), this sequence (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^6); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^6: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    A017490:=n->(11*n+8)^6; seq(A017490(n), n=0..20); # Wesley Ivan Hurt, May 21 2014
  • Mathematica
    (11*Range[0,20]+8)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {262144, 47045881, 729000000, 4750104241, 19770609664, 62523502209, 164206490176}, 20] (* Harvey P. Dale, Nov 08 2013 *)
  • Maxima
    makelist( (11*n+8)^6, n, 0, 20); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(20, n, (11*n-3)^6) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^6 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

a(0)=262144, a(1)=47045881, a(2)=729000000, a(3)=4750104241, a(4)=19770609664, a(5)=62523502209, a(6)=164206490176, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Nov 08 2013
a(n) = A001014(A017485(n)). - Wesley Ivan Hurt, May 21 2014
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (262144 +45210873*x +405183857*x^2 +625892702*x^3 +191449182*x^4 +7524433*x^5 +729*x^6)/(1-x)^7.
E.g.f.: (262144 +46783737*x +317585191*x^2 +450663290*x^3 +206511305*x^4 + 34303863*x^5 +1771561*x^6)*exp(x). (End)

A017491 a(n) = (11*n + 8)^7.

Original entry on oeis.org

2097152, 893871739, 21870000000, 194754273881, 1028071702528, 3938980639167, 12151280273024, 32057708828125, 75144747810816, 160578147647843, 318547390056832, 594467302491009, 1054135040000000, 1789940649848551, 2928229434235008, 4637914326451397, 7140436495826944
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), this sequence (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^7); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^7: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^7, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[0,20]+8)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8, -1}, {2097152, 893871739, 21870000000, 194754273881, 1028071702528, 3938980639167, 12151280273024, 32057708828125}, 20] (* Harvey P. Dale, Aug 14 2015 *)
  • PARI
    vector(20, n, (11*n-3)^7) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^7 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

G.f.: (2097152 +877094523*x +14777746344*x^2 +44705242061*x^3 +32487494736*x^4 +5260268829*x^5 +105396008*x^6 +2187*x^7)/(1-x)^8. - R. J. Mathar, Jun 24 2009
a(0)=2097152, a(1)=893871739, a(2)=21870000000, a(3)=194754273881, a(4)=1028071702528, a(5)=3938980639167, a(6)=12151280273024, a(7)=32057708828125, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - Harvey P. Dale, Aug 14 2015
E.g.f.: (2097152 +891774587*x +10042176837*x^2 +21970631991*x^3 + 15695884050*x^4 +4432767724*x^5 +508438007*x^6 +19487171*x^7)*exp(x). - G. C. Greubel, Sep 22 2019

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017492 a(n) = (11*n + 8)^8.

Original entry on oeis.org

16777216, 16983563041, 656100000000, 7984925229121, 53459728531456, 248155780267521, 899194740203776, 2724905250390625, 7213895789838336, 17181861798319201, 37588592026706176, 76686282021340161, 147578905600000000, 270281038127131201, 474373168346071296
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), this sequence (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^8); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^8: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^8, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[21] -3)^8 (* G. C. Greubel, Sep 22 2019 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{16777216,16983563041,656100000000,7984925229121,53459728531456,248155780267521,899194740203776,2724905250390625,7213895789838336},20] (* Harvey P. Dale, Jul 02 2024 *)
  • PARI
    vector(20, n, (11*n-3)^8) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^8 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (16777216 +16832568097*x +503851912407*x^2 +2690024212453*x^3 + 3790496103139*x^4 +1500946746723*x^5 +139306025317*x^6 +1475730007*x^7 + 6561*x^8)/(1-x)^9.
E.g.f.: (16777216 +16966785825*x +311074825567*x^2 +1011259856838*x^3 + 1057862922501*x^4 +451919091162*x^5 +86384857482*x^6 +7249227612*x^7 + 214358881*x^8)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017493 a(n) = (11*n + 8)^9.

Original entry on oeis.org

134217728, 322687697779, 19683000000000, 327381934393961, 2779905883635712, 15633814156853823, 66540410775079424, 231616946283203125, 692533995824480256, 1838459212420154507, 4435453859151328768, 9892530380752880769, 20661046784000000000, 40812436757196811351
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), this sequence (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^9); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^9: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^9, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11Range[0,10]+8)^9  (* Harvey P. Dale, Apr 06 2011 *)
  • Maxima
    makelist( (11*n+8)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(20, n, (11*n-3)^9) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^9 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (134217728 +321345520499*x +16462162819970*x^2 +145056774666656*x^3 +353127201685502*x^4 +272712961891082*x^5 +64342728755486*x^6 + 3608087683520*x^7 +20660849954*x^8 +19683*x^9)/(1-x)^10.
E.g.f.: (134217728 +322553480051*x +9518879411085*x^2 +44883477211595*x^3 +66132730395270*x^4 +40107394890717*x^5 +11363589456450*x^6 + 1566417779322*x^7 +100319956308*x^8 +2357947691*x^9)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017494 a(n) = (11*n + 8)^10.

Original entry on oeis.org

1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624, 1276136419117121619201, 2892546549760000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), this sequence (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^10); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^10: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^10, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[21] -3)^10 (* G. C. Greubel, Sep 22 2019 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1073741824,6131066257801,590490000000000,13422659310152401,144555105949057024,984930291881790849,4923990397355877376,19687440434072265625,66483263599150104576,196715135728956532249,523383555379856794624},20] (* Harvey P. Dale, May 08 2022 *)
  • PARI
    vector(20, n, (11*n-3)^10) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^10 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (1073741824 +6119255097737*x +523107326964509*x^2 +7264300786930496 *x^3 +28371531939645368*x^4 +37662294296897282*x^5 +17578871136786818* x^6 +2623025688296696*x^7 +92185633683584*x^8 +289254005437*x^9 +59049* x^10)/(1-x)^11.
E.g.f.: (1073741824 +6129992515977*x +289114470613111*x^2 +1944930239197330*x^3 +3932620229881585*x^4 +3254225912463141*x^5 + 1282086963575187*x^6 +258144995263320*x^7 +26861311378110*x^8 + 1355819922325*x^9 +25937424601*x^10)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017495 a(n) = (11*n + 8)^11.

Original entry on oeis.org

8589934592, 116490258898219, 17714700000000000, 550329031716248441, 7516865509350965248, 62050608388552823487, 364375289404334925824, 1673432436896142578125, 6382393305518410039296, 21048519522998348950643, 61759259534823101765632, 164621598066108688876929
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), this sequence (m=11), A017496 (m=12).

Programs

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (8589934592 +116387179683115*x +16317383828904444*x^2 + 345439099017920655*x^3 +2056463723815998816*x^4 +4330360244540059158*x^5 +3485249533342266888*x^6 +1049164126934199606*x^7 +103278745612305120* x^8 +2335591020671359*x^9 +4049563043900*x^10 +177147*x^11)/(1-x)^12.
E.g.f.: (8589934592 +116481668963627*x +8740864036069077*x^2 + 82922398983834751*x^3 +225890484585013050*x^4 +248275055013875318*x^5 + 130670920341658389*x^6 +36045281196709257*x^7 +5418280840195080*x^8 + 440547156847985*x^9 +17974635248493*x^10 +285311670611*x^11)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019
Showing 1-10 of 11 results. Next