A017885
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 17, 21, 26, 32, 39, 47, 57, 67, 79, 93, 110, 131, 157, 189, 228, 276, 332, 399, 478, 571, 681, 812, 969, 1158, 1387, 1662, 1994
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 18]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017885_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(19)) ).list()
A017885_list(70) # G. C. Greubel, Sep 25 2024
A017886
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 19, 23, 28, 34, 41, 49, 59, 72, 86, 102, 122, 146, 175, 210, 252, 303, 366, 441, 529, 635, 762, 914, 1096, 1314, 1576, 1893, 2275
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 19]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017886_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(20)) ).list()
A017886_list(70) # G. C. Greubel, Sep 25 2024
A017878
Expansion of 1/(1-x^9-x^10-x^11).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 6, 7, 21, 50, 90, 126, 141, 126, 90, 51, 28, 34, 78, 161
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 11]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1},{1,0,0,0,0,0,0,0,0,1,1},70] (* Harvey P. Dale, May 25 2023 *)
-
def A017878_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(12)) ).list()
A017878_list(80) # G. C. Greubel, Sep 25 2024
A017879
Expansion of 1/(1-x^9-x^10-x^11-x^12).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 1, 3, 6, 10, 12, 12, 10, 6, 3, 2, 4, 10, 20, 31, 40, 44, 40, 31, 21, 15, 19, 36, 65, 101, 135, 155, 155, 136, 107, 86, 91, 135, 221, 337, 456, 546
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1/(1-x^9 -x^10 -x^11 -x^12), {x,0,70}], x] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1,1}, {1,0,0,0,0,0,0,0,0,1,1,1}, 70] (* Harvey P. Dale, Apr 29 2013 *)
CoefficientList[Series[1/(1 - Total[x^Range[9, 12]]), {x,0,70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017879_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(13)) ).list()
A017879_list(85) # G. C. Greubel, Sep 25 2024
A017880
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 11, 10, 13, 21, 35, 52, 68, 80, 85, 81, 73, 67, 70, 90, 131, 189, 256, 320, 366, 387, 386, 376, 381, 431, 547
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 13]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,1,1,1,1},70] (* Harvey P. Dale, Apr 03 2018 *)
-
def A017880_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(14)) ).list()
A017880_list(80) # G. C. Greubel, Sep 25 2024
A017881
Expansion of 1/(1 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 3, 4, 6, 10, 15, 21, 25, 27, 27, 26, 25, 25, 30, 41, 59, 81, 104, 125, 141, 151, 155, 160, 174, 206, 261, 340, 440, 551, 661, 757, 836, 906, 987
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1).
-
R:=PowerSeriesRing(Integers(), 80);
Coefficients(R!( (1-x)/(1-x-x^9+x^(15)) )); // G. C. Greubel, Sep 25 2024
-
CoefficientList[Series[1/(1-Total[x^Range[9,14]]),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,1,1,1,1,1}, 60] (* Harvey P. Dale, Feb 27 2012 *)
-
def A017881_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(15)) ).list()
A017881_list(80) # G. C. Greubel, Sep 25 2024
A017882
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 5, 6, 8, 11, 15, 21, 28, 33, 36, 38, 40, 43, 48, 56, 71, 94, 122, 152, 182, 211, 239, 266, 294, 332, 390, 474, 586, 725, 888, 1071, 1266, 1466
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 15]]),{x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017882_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(16)) ).list()
A017882_list(80) # G. C. Greubel, Sep 25 2024
A017883
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 7, 8, 10, 13, 17, 22, 28, 36, 42, 47, 52, 58, 66, 77, 92, 112, 141, 176, 215, 257, 302, 351, 406, 470, 546, 645, 774, 937, 1136, 1372, 1646
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 16]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
def A017883_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(17)) ).list()
A017883_list(65) # G. C. Greubel, Sep 25 2024
A017884
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 12, 15, 19, 24, 30, 37, 45, 53, 61, 70, 81, 95, 113, 136, 165, 201, 245, 296, 354, 420, 496, 585, 691, 819, 975, 1167, 1402, 1686, 2025
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1).
-
m:=70; R:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // Vincenzo Librandi, Jul 01 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[9, 17]]), {x, 0, 60}], x] (* Harvey P. Dale, Sep 12 2012 *)
-
def A017884_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(18)) ).list()
A017884_list(70) # G. C. Greubel, Sep 25 2024
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
Showing 1-10 of 14 results.
Comments