A075498
Stirling2 triangle with scaled diagonals (powers of 3).
Original entry on oeis.org
1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1
Offset: 1
[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).
From _Philippe Deléham_, Feb 13 2013: (Start)
Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 9, 9, 1;
0, 27, 63, 18, 1;
0, 81, 405, 225, 30, 1;
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
rows = 9;
t = Table[3^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A016137
Expansion of 1/((1-3*x)*(1-6*x)).
Original entry on oeis.org
1, 9, 63, 405, 2511, 15309, 92583, 557685, 3352671, 20135709, 120873303, 725416965, 4353033231, 26119793709, 156723545223, 940355620245, 5642176768191, 33853189749309, 203119525916343, 1218718317759525, 7312313393341551, 43873890820402509, 263243376303474663, 1579460351964026805, 9476762394213697311
Offset: 0
-
[2*6^n -3^n: n in [0..40]]; // G. C. Greubel, Nov 14 2024
-
Table[2*6^n -3^n, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
CoefficientList[Series[1/((1-3x)(1-6x)),{x,0,40}],x] (* or *) LinearRecurrence[{9,-18},{1,9},40] (* Harvey P. Dale, Jul 07 2012 *)
-
Vec(1/(1-3*x)/(1-6*x)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
-
[lucas_number1(n,9,18) for n in range(1,41)] # Zerinvary Lajos, Apr 23 2009
A028085
Expansion of 1/((1-3x)(1-6x)(1-9x)(1-12x)).
Original entry on oeis.org
1, 30, 585, 9450, 137781, 1888110, 24862545, 318755250, 4012058061, 49847787990, 613622150505, 7503229474650, 91300979746341, 1106997911204670, 13386607046238465, 161563913916523650
Offset: 0
-
CoefficientList[Series[1/((1-3x)(1-6x)(1-9x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{30,-315,1350,-1944},{1,30,585,9450},30] (* Harvey P. Dale, Feb 06 2015 *)
-
Vec(1/((1-3*x)*(1-6*x)*(1-9*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A019618
Expansion of 1/((1-4*x)*(1-7*x)*(1-10*x)).
Original entry on oeis.org
1, 21, 303, 3745, 42711, 464961, 4918663, 51086385, 524227671, 5336085601, 54018566823, 544793838225, 5480212349431, 55028108373441, 551863246323783, 5529708675105265, 55374624529091991, 554289026917064481, 5546689809273133543, 55493495148326663505, 555121131971945559351
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-7*x)*(1-10*x)))); // Vincenzo Librandi, Jul 03 2013
-
I:=[1, 21, 303]; [n le 3 select I[n] else 21*Self(n-1)-138*Self(n-2)+280*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
-
CoefficientList[Series[1 / ((1 - 4 x) (1 - 7 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{21,-138,280},{1,21,303},30] (* Harvey P. Dale, Mar 09 2017 *)
-
x='x+O('x^30); Vec(1/((1-4*x)*(1-7*x)*(1-10*x))) \\ G. C. Greubel, Aug 24 2018
A020447
Expansion of 1/((1-5*x) * (1-8*x) * (1-11*x)).
Original entry on oeis.org
1, 24, 393, 5480, 70161, 853944, 10066393, 116192520, 1322205921, 14898923864, 166735197993, 1856912289960, 20608880226481, 228161663489784, 2521496249891193, 27830232878409800, 306882907287251841, 3381715508097175704, 37246902627265441993, 410100204278978264040
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-5*x)*(1-8*x)*(1-11*x)))); // Vincenzo Librandi, Jul 03 2013
-
I:=[1, 24, 393]; [n le 3 select I[n] else 24*Self(n-1)-183*Self(n-2)+440*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
-
CoefficientList[Series[1 / ((1 - 5 x) (1 - 8 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{24,-183,440},{1,24,393},30] (* Harvey P. Dale, Jun 20 2015 *)
A020724
G.f.: 1/((1-6*x)*(1-9*x)*(1-12*x)).
Original entry on oeis.org
1, 27, 495, 7695, 109431, 1474767, 19198215, 244167615, 3055792311, 37811613807, 464078786535, 5662363023135, 68791291322391, 833094971965647, 10065613312624455, 121404092777808255, 1462402531680439671
Offset: 0
-
CoefficientList[Series[1/((1-6x)(1-9x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{27,-234,648},{1,27,495},20] (* Harvey P. Dale, Feb 18 2025 *)
-
Vec(1/((1-6*x)*(1-9*x)*(1-12*x)) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
Showing 1-6 of 6 results.
Comments