cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A019426 Continued fraction for tan(1/3).

Original entry on oeis.org

0, 2, 1, 7, 1, 13, 1, 19, 1, 25, 1, 31, 1, 37, 1, 43, 1, 49, 1, 55, 1, 61, 1, 67, 1, 73, 1, 79, 1, 85, 1, 91, 1, 97, 1, 103, 1, 109, 1, 115, 1, 121, 1, 127, 1, 133, 1, 139, 1, 145, 1, 151, 1, 157, 1, 163, 1, 169, 1, 175, 1, 181, 1, 187, 1, 193, 1, 199, 1, 205, 1, 211, 1, 217, 1, 223, 1
Offset: 0

Views

Author

Keywords

Comments

The simple continued fraction expansion of 3*tan(1/3) is [1; 25, 1, 3, 1, 61, 1, 7, 1, 97, 1, 11, 1, ..., 36*n + 25, 1, 4*n + 3, 1, ...], while the simple continued fraction expansion of (1/3)*tan(1/3) is [0; 8, 1, 1, 1, 43, 1, 5, 1, 79, 1, 9, 1, 115, 1, 13, 1, ..., 36*n + 7, 1, 4*n + 1, 1, ...]. See my comment in A019425. - Peter Bala, Sep 30 2023

Examples

			0.346253549510575491038543565... = 0 + 1/(2 + 1/(1 + 1/(7 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 13 2009
		

Crossrefs

Cf. A161012 (decimal expansion of tan(1/3)).
Cf. continued fractions for tan(1/m): A019425 (m=2), A019427 (m=4), A019428 (m=5), A019429 (m=6), A019430 (m=7), A019431 (m=8), A019432 (m=9), A019433 (m=10), A093178 (m=1).

Programs

  • Magma
    [n le 1 select 2*n else 1+3*(1-(-1)^n)*(n-1)/2: n in [0..80]]; // Bruno Berselli, Sep 21 2012
  • Mathematica
    ContinuedFraction[Tan[1/3], 80] (* Bruno Berselli, Sep 21 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 88000); x=contfrac(tan(1/3)); for (n=0, 20000, write("b019426.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009
    

Formula

From Bruno Berselli, Sep 21 2012: (Start)
G.f.: x*(2+x+3*x^2-x^3+x^4)/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) with n>4, a(0)=0, a(1)=2, a(2)=1, a(3)=7, a(4)=1.
a(n) = 1+3*(1-(-1)^n)*(n-1)/2 with n>1, a(0)=0, a(1)=2.
For k>0: a(2k) = 1, a(4k+1) = 2*a(2k+1)-1 and a(4k+3) = 2*a(2k+1)+5, with a(0)=0, a(1)=2. (End)

A126980 a(n) = 14*n + 47.

Original entry on oeis.org

47, 61, 75, 89, 103, 117, 131, 145, 159, 173, 187, 201, 215, 229, 243, 257, 271, 285, 299, 313, 327, 341, 355, 369, 383, 397, 411, 425, 439, 453, 467, 481, 495, 509, 523, 537, 551, 565, 579, 593, 607, 621, 635, 649, 663, 677, 691, 705, 719, 733, 747
Offset: 0

Views

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R135L90R135 from iteration 47 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle (in degrees) at each iteration.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
  • S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.

Crossrefs

Programs

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (-33*x + 47)/(x - 1)^2. (End)
E.g.f.: (47 + 14*x)*exp(x). - G. C. Greubel, May 30 2016

Extensions

More terms from Stefan Steinerberger and Diana L. Mecum, Jun 17 2007

A161016 Decimal expansion of tan(1/7).

Original entry on oeis.org

1, 4, 3, 8, 3, 6, 9, 5, 9, 4, 3, 6, 1, 9, 0, 9, 3, 5, 2, 8, 0, 0, 3, 0, 5, 9, 9, 1, 3, 5, 6, 2, 3, 3, 4, 4, 9, 8, 7, 5, 6, 8, 1, 6, 9, 6, 7, 3, 8, 8, 8, 5, 3, 9, 3, 3, 0, 8, 7, 1, 0, 0, 1, 6, 5, 3, 1, 8, 6, 4, 4, 4, 9, 9, 4, 6, 1, 4, 5, 3, 6, 3, 4, 8, 4, 9, 8, 7, 3, 6, 8, 3, 9, 2, 6, 8, 2, 6, 8, 4, 3, 9, 5, 4, 5
Offset: 0

Views

Author

Harry J. Smith, Jun 14 2009

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.143836959436190935280030599135623344987568169673888539330871001653186...
		

Crossrefs

Cf. A019430 Continued fraction.

Programs

  • Mathematica
    RealDigits[Tan[1/7],10,120][[1]] (* Harvey P. Dale, Dec 11 2016 *)
  • PARI
    default(realprecision, 20080); x=10*tan(1/7); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b161016.txt", n, " ", d));
Showing 1-3 of 3 results.