cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A020697 Number of divisors of A019505(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 48, 60, 72, 84, 96, 120, 144, 168, 192, 224, 256, 320, 384, 448, 512, 576, 672, 768, 896, 1024, 1152, 1344, 1536, 1792, 2048, 2304, 2688, 3072, 3456, 4032, 4608, 5376, 6144, 6912, 8064, 9216, 10368, 11520, 12960, 14400, 17280
Offset: 1

Views

Author

J. Lowell, May 11 2007, corrected Mar 20 2008

Keywords

Comments

Conjecture: all numbers of the form 3*2^n are in this sequence. - J. Lowell, Mar 12 2008 [This is false: 3*2^12 = 12288 is the smallest counterexample. - Klaus Brockhaus, Jul 24 2008]

Crossrefs

Formula

a(n) = A000005(A019505(n)).

Extensions

More terms from Klaus Brockhaus, Jul 24 2008

A330745 Primorial deflation of A019505(n), where A019505(n) is smallest number with same number of divisors as 2*A019505(n-1), starting from A019505(1) = 1.

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 24, 10, 20, 40, 30, 60, 21, 42, 84, 168, 336, 66, 132, 264, 528, 396, 792, 117, 234, 468, 936, 1872, 780, 1560, 612, 1224, 2448, 1020, 2040, 684, 1368, 2736, 1140, 2280, 4560, 1596, 3192, 1380, 2760, 5520, 1932, 3864, 7728, 15456, 11592, 23184, 1827, 3654, 7308, 14616, 29232, 1953, 3906, 7812, 15624, 31248, 62496
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2020

Keywords

Comments

a(n) is the unique integer k such that A108951(k) = A019505(n).
Conjectured to be a subsequence of A329902.
Terms computed from b-file of A019505 provided by R. J. Mathar.

Crossrefs

Cf. A330744 (conjectured subsequence).

Programs

Formula

a(n) = A329900(A019505(n)).

A241813 Numbers disqualified from being in A019505 for not being the smallest number with their respective number of divisors.

Original entry on oeis.org

8, 96, 480, 1440, 40320, 443520, 1330560, 34594560, 86486400, 588107520, 1470268800, 11174042880, 55870214400, 195545750400, 1285014931200, 17990209036800, 53970627110400, 1565148186201600, 194078375088998400, 7180899878292940800, 35904499391464704000, 294416895010010572800
Offset: 1

Views

Author

J. Lowell, Apr 29 2014

Keywords

Comments

It appears that when 2*A019505(n) is a member of this sequence then the exponent in at least one primary of the factorization of A019505(n+1) is smaller than in the corresponding primary of A019505(n) or A019505(n+1) contains an additional prime factor. The smallest example in this sequence where two primaries have smaller exponents and an additional prime factor is added is a(14) = 2*A019505(43) = 2 * 97772875200 = 195545750400. The sequence of exponents of its primaries is (7, 3, 2, 2, 1, 1, 1, 1 ) while A019505(44) = 160626866400 has exponent sequence (5, 3, 2, 1, 1, 1, 1, 1, 1 ). - Hartmut F. W. Hoft, Feb 22 2023

Examples

			8 qualifies because 8 = 4*2 and 4 is in A019505, but 8 can't be term after 4 in A019505 because smallest number with 4 divisors is 6.
		

Crossrefs

Programs

  • Mathematica
    dataA019505 = Map[Last, Import[URL["https://oeis.org/A019505/b019505.txt"], "Data"]]
    dataA241813 = Take[Map[First, Select[Map[{2#[[1]], 2#[[1]]==#[[2]]}&, Transpose[{Most[dataA019505], Rest[dataA019505]}]], !#[[2]]&]], 22] (* Hartmut F. W. Hoft, Feb 22 2023 *)

Extensions

More terms from Hartmut F. W. Hoft, Feb 22 2023

A140635 Smallest positive integer having the same number of divisors as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 6, 12, 2, 24, 2, 12, 6, 6, 6, 36, 2, 6, 6, 24, 2, 24, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 24, 2, 12, 6, 24, 2, 60, 2, 6, 12, 12, 6, 24, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2
Offset: 1

Views

Author

Max Alekseyev, May 19 2008

Keywords

Comments

a(n) <= n for all n. Moreover, a(n) = n if and only if n belongs to A005179 or A007416.

Crossrefs

Cf. A019505, A138113, A061300 (sequences that can be defined in terms of this sequence).

Programs

  • Mathematica
    a140635[n_] := NestWhile[#+1&, 1, DivisorSigma[0, n]!=DivisorSigma[0, #]&]
    a140635[{m_, n_}] := Map[a140635, Range[m, n]]
    a140635[{1, 89}] (* Hartmut F. W. Hoft, Jun 13 2023 *)
  • PARI
    A140635(n) = { my(nd = numdiv(n)); for (i=1, n, if (numdiv(i) == nd, return (i))); }; \\ After A139770, Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n):
        x=d(n)
        m=1
        while True:
            if d(m)==x: return m
            else: m+=1 # Indranil Ghosh, May 27 2017

Formula

a(n) = A005179(A000005(n)).

A094783 Numbers k such that, for all m < k, d_i(k) <= d_i(m) for i=1 to Min(d(k),d(m)), where d_i(k) denotes the i-th smallest divisor of k.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 720720, 1441440, 2162160, 3603600, 7207200, 10810800, 122522400, 183783600, 2327925600, 3491888400, 80313433200
Offset: 1

Views

Author

Matthew Vandermast, Jun 10 2004

Keywords

Comments

The function d(k) (A000005) is the number of divisors of k.
The defining criterion for this sequence is a sufficient, but not necessary, condition for membership in A095849.
Subsequence of A002182. - David Wasserman, Jun 28 2007
Why is 720 not in the sequence? The divisors of 360 begin 1,2,3,4,5,6,8,9,10,12,15,18 (A018412) and the divisors of 720 begin 1,2,3,4,5,6,8,9,10,12,15,16 (A018609). - J. Lowell, Aug 23 2007 [Answer from Don Reble, Sep 11 2007: 720 is precluded by 420. (1,2,3,4,5,6,7,10,12,14,15,20,21,...) (A018444).]
Conjecture: If k is in this sequence, then so is the smallest number with k divisors. (This conjecture is definitely false for A002182 (k=840) and A019505 (k=240).) - J. Lowell, Jan 24 2008

Examples

			As k increases, the positive integer k=6 sets or ties the existing records for smallest first, second and third-smallest divisors (1, 2 and 3), as well as for its fourth-smallest (6). Since no smaller integer has more than three divisors, 6 is a term of this sequence.
		

Crossrefs

Cf. A123258.

Programs

  • PARI
    ge(va, vb) = {for(i=1, min(#va, #vb), if (va[i] > vb[i], return(0));); return(-1);}
    isok(k) = {my(dk = divisors(k)); for (m=1, k-1, my(dm = divisors(m)); if (! ge(dk, dm), return(0));); return(1);} \\ Michel Marcus, Mar 16 2022

Extensions

More terms from David Wasserman, Jun 28 2007
Definition corrected by Ray Chandler, May 05 2008

A133411 Smallest highly composite number of the form k*a(n-1) where k is an integer greater than 1.

Original entry on oeis.org

1, 2, 4, 12, 24, 48, 240, 720, 5040, 10080, 20160, 221760, 665280, 8648640, 17297280, 294053760, 5587021440, 27935107200, 642507465600, 1927522396800, 13492656777600, 26985313555200, 782574093100800, 24259796886124800
Offset: 1

Views

Author

J. Lowell, Nov 25 2007

Keywords

Comments

Conjecture: subsequence of A019505.

Examples

			6 is not in the sequence because 6 is not a multiple of 4, the previous term.
		

Crossrefs

Cf. A002182, A019505, A328521, A330744 (primorial deflation).

Programs

  • PARI
    sublist_of_first_proper_multiple_terms_of(v) = { my(u=v[1], lista=List(u)); for(i=2,#v,if((v[i]>u)&&!(v[i]%u), u = v[i]; listput(lista,u))); Vec(lista); };
    v133411 = sublist_of_first_proper_multiple_terms_of(v002182); \\ v002182 contains the terms of A002182.
    A133411(n) = v133411[n]; \\ Antti Karttunen, Jan 10 2020

Extensions

a(12)-a(24) from Donovan Johnson, Sep 09 2008

A138113 a(n) is the smallest number with same number of divisors as n*a(n-1).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 27720, 166320, 1441440, 7207200, 73513440, 367567200, 4655851200, 64250746560, 1028011944960, 5140059724800, 32607253879200, 260858031033600, 4620913692595200, 97039187544499200, 897612484786617600, 9873737332652793600
Offset: 1

Views

Author

J. Lowell, May 04 2008

Keywords

Examples

			For n=8, n*a(n-1) = 8*5040 = 40320 has 96 divisors, but the smallest number with 96 divisors is 27720, so a(8)=27720.
		

Crossrefs

Cf. A019505 (2*a(n-1)).
Cf. A140635.

Programs

  • PARI
    A138113(n)={ local(an1,t) ; if(n<=2, return(n) ) ; an1 = A138113(n-1) ; t=length(divisors(n*an1)) ; return(A005179(t)) ; } {for (n=1,40, print1(A138113(n)", ") ; ) } \\ R. J. Mathar, Mar 20 2010

Formula

a(n) = A140635(n*a(n-1)). - J. Lowell, May 20 2008

Extensions

More terms from R. J. Mathar, Mar 20 2010
a(23) from Jon E. Schoenfield, Mar 17 2022

A140864 Smallest odd number with same number of divisors as 3*a(n-1).

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 315, 945, 2835, 3465, 10395, 31185, 45045, 135135, 405405, 675675, 2027025, 3828825, 11486475, 34459425, 72747675, 218243025, 654729075, 1527701175, 4583103525, 11712375675, 35137127025, 105411381075
Offset: 1

Views

Author

J. Lowell, Jul 20 2008

Keywords

Examples

			9*3=27 has 4 divisors, but smallest odd number with 4 divisors is 15.
		

Crossrefs

Cf. A053624, A019505. d(a(n)) = A036451(n) for first 18 terms.

Programs

  • PARI
    a(nn) = {ia = 1; print1(ia, ", "); for (n = 1, nn - 1, nd = numdiv(3*ia); forstep(i = 1, 3*ia, 2, if (numdiv(i) == nd, ia = i; break;);); print1(ia, ", "););} \\ Michel Marcus, Jun 14 2013
    
  • PARI
    {/*prints b-file for A140864 - add more for loops for more terms*/ print("#A140864"); print(1" "1); print(2" "3); n = 3; for(p=3,56,tau = numdiv(3*n); exp3n=factor(n)[1,2];delta = bigomega(exp3n+2) - bigomega(exp3n+1); delta = max(delta+1,2); var = exp3n+delta; num = 10^1000; for( n1=1, var, for (n2=0, n1, for( n3=0, n2, for( n4=0, n3, for( n5=0, n4, for( n6=0, n5, for( n7=0, n6, for( n8=0, n7, for( n9=0, n8, for( n10=0, n9, for( n11=0, n10, for( n12=0, n11, for( n13=0, n12, for( n14=0, n13, for( n15=0, n14, if( (n1+1) * (n2+1) * (n3+1) * (n4+1) * (n5+1) * (n6+1) * (n7+1) * (n8+1) * (n9+1) * (n10+1) * (n11+1) * (n12+1) * (n13+1) * (n14+1) * (n15+1) == tau, numtemp = prime(2)^n1 * prime(3)^n2 * prime(4)^n3 * prime(5)^n4 * prime(6)^n5 * prime(7)^n6  * prime(8)^n7 * prime(9)^n8 * prime(10)^n9 * prime(11)^n10 * prime(12)^n11 * prime(13)^n12 * prime(14)^n13 * prime(15)^n14 * prime(16)^n15; if(numtemp < num, num = numtemp); ));););););););) ;);););) ;););); print(p" "num); n=num;)} \\ Dimitri Papadopoulos, May 08 2019

Extensions

a(10) through a(28) from Klaus Brockhaus, Jul 23 2008
a(29) through a(56) from Dimitri Papadopoulos, May 08 2019

A135614 Largest highly composite number <= 2*a(n-1).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 720, 1260, 2520, 5040, 10080, 20160, 27720, 55440, 110880, 221760, 332640, 665280, 1081080, 2162160, 4324320, 8648640, 17297280, 32432400, 61261200, 122522400, 245044800, 367567200, 735134400, 1396755360, 2793510720, 5587021440
Offset: 1

Views

Author

J. Lowell, Feb 28 2008

Keywords

Comments

Not the same as A019505; the 29th term of A019505 is 21621600.

Examples

			17297280*2 = 34594560; smallest highly composite number <= 34594560 is 32432400.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Jun 18 2021

A350049 a(1) = 1; for n > 1, a(n) is the smallest number with at least as many divisors as 2*a(n-1).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 720, 1260, 2520, 5040, 10080, 20160, 27720, 55440, 110880, 221760, 332640, 665280, 1081080, 2162160, 4324320, 8648640, 17297280, 21621600, 43243200, 73513440, 147026880, 294053760, 367567200, 735134400, 1396755360, 2793510720
Offset: 1

Views

Author

J. Lowell, Dec 11 2021

Keywords

Comments

Identical to A019505 for 63 terms. A019505(64) = 97039187544499200 (the smallest number with exactly 63360 divisors), but a(64) = 74801040398884800 (the smallest number with at least 63360 divisors; its actual number of divisors is 64512).
Subsequence of A002182.

Crossrefs

Showing 1-10 of 11 results. Next