cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067103 a(n) = floor(X/Y), where X = concatenation of cubes and Y = concatenation of natural numbers.

Original entry on oeis.org

1, 1, 14, 148, 14804, 1480398, 148039049, 14803895356, 1480389427723, 148038942652481, 14803894265116205, 1480389426511476635, 148038942651147507639, 14803894265114750596056, 1480389426511475059425814, 148038942651147505942389607, 14803894265114750594238756940
Offset: 1

Views

Author

Robert G. Wilson v, Jan 09 2002

Keywords

Comments

a(n) -> 148038942651147505942387547594667814093751032610233441970375...

Examples

			a(6) = floor(182764125216/123456) = floor(1480398.888802...) = 1480398.
		

Crossrefs

Programs

  • Maple
    a:= n-> floor(parse(cat(i^3$i=1..n))/parse(cat($1..n))):
    seq(a(n), n=1..17);  # Alois P. Heinz, May 25 2022
  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^3]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
    nn=20;With[{c=Table[IntegerDigits[n^3],{n,nn}],s=Table[IntegerDigits[n],{n,nn}]}, Table[Floor[FromDigits[Flatten[Take[c,i]]]/FromDigits[Flatten[Take[s,i]]]],{i,nn}]] (* Harvey P. Dale, Feb 10 2013 *)
  • PARI
    c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
    c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
    a(n) = c3(n)\c1(n); \\ Michel Marcus, May 25 2022

A133820 Triangle whose rows are sequences of increasing cubes: 1; 1,8; 1,8,27; ... .

Original entry on oeis.org

1, 1, 8, 1, 8, 27, 1, 8, 27, 64, 1, 8, 27, 64, 125, 1, 8, 27, 64, 125, 216, 1, 8, 27, 64, 125, 216, 343, 1, 8, 27, 64, 125, 216, 343, 512, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
Offset: 1

Views

Author

Peter Bala, Sep 25 2007

Keywords

Comments

Reading the triangle by rows produces the sequence 1,1,8,1,8,27,1,8,27,64,..., analogous to A002260.

Examples

			Triangle starts
1;
1, 8;
1, 8, 27;
1, 8, 27, 64;
1, 8, 27, 64, 125;
		

Crossrefs

Programs

  • Haskell
    a133820 n k = a133820_tabl !! (n-1) !! (k-1)
    a133820_row n = a133820_tabl !! (n-1)
    a133820_tabl = map (`take` (tail a000578_list)) [1..]
    -- Reinhard Zumkeller, Nov 11 2012
  • Mathematica
    Module[{nn=10,c},c=Range[nn]^3;Flatten[Table[Take[c,n],{n,10}]]] (* Harvey P. Dale, Mar 05 2014 *)

Formula

O.g.f.: (1+4qx+q^2x^2)/((1-x)(1-qx)^4) = 1 + x(1 + 8q) + x^2(1 + 8q + 27q^2) + ... .

Extensions

Offset changed by Reinhard Zumkeller, Nov 11 2012

A066700 The leading digits in the terms in A067103 converge; dividing by a suitable power of 10 they converge to the number shown below; sequence gives continued fraction for this number.

Original entry on oeis.org

1, 2, 12, 4, 34, 1, 22, 1, 4, 1, 1, 2, 1, 1, 17, 16, 3, 1, 1, 2, 1, 1, 1, 5, 1, 1, 3, 3, 14, 2, 107, 1, 1, 8, 5, 4, 7, 1, 4, 1, 6, 3, 19, 3, 1, 1, 2, 3, 5, 76, 1, 1, 2, 1, 1, 90, 2, 2, 48717, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 14, 2, 1, 1, 2, 4, 28, 2, 3, 46, 1, 1, 3, 1, 1, 1, 2, 1, 5, 12, 1, 1, 3, 3, 1, 2, 3, 1, 78, 1, 1, 1, 3, 2, 4, 1, 6, 1, 1, 1048, 1, 3, 1, 1, 2, 3, 4, 1, 2, 4, 3, 8, 1, 12, 5, 1, 1, 7, 1, 11, 11, 1, 118, 6, 1, 2, 1, 5, 3, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 3, 5, 4, 1, 12, 147838832589501802758390, 1, 10, 1, 1, 1, 2, 4, 6, 10, 2, 8, 1, 2, 1, 1, 7, 1, 1, 1, 3, 9, 1, 1, 1, 55, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Randall L Rathbun, Jan 12 2002

Keywords

Examples

			1.480389426511475059423875475946678140937510326102334419703757169...
		

Crossrefs

For a more dramatic continued fraction see A030167.

Programs

  • PARI
    {A067103(n)= c=0; d=0; for(i=1,n, c=c*10^(1+floor(3*log(i)/log(10)))+i^3; d=d*10^(1+floor(log(i)/log(10)))+i; ); floor(c/d) }
    
  • PARI
    c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
    c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
    lista() = my(nn=1000); default(realprecision, 1000); my(x=c3(nn)\c1(nn)); x = x/10.^(#Str(x)-1); contfrac(x); \\ Michel Marcus, May 25 2022

A284377 Concatenation of the first n positive 4th powers.

Original entry on oeis.org

1, 116, 11681, 11681256, 11681256625, 116812566251296, 1168125662512962401, 11681256625129624014096, 116812566251296240140966561, 11681256625129624014096656110000, 1168125662512962401409665611000014641, 116812566251296240140966561100001464120736
Offset: 1

Views

Author

XU Pingya, Mar 25 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(s=""); for (k=1, n, s = concat(s, Str(k^4))); eval(s); \\ Michel Marcus, Dec 30 2022

Extensions

a(8) corrected by Georg Fischer, Dec 30 2022

A359403 Primes that are the concatenation of the first m consecutive k-th powers.

Original entry on oeis.org

149, 11681, 164729, 1102459049, 1262144387420489, 1472236648286964521369622528399544939174411840147874772641, 1755578637259143234191361824800363140073127359051977856583921
Offset: 1

Views

Author

Michel Marcus, Dec 30 2022

Keywords

Comments

The following comments were moved from A284377 when this sequence was created.
From XU Pingya, Mar 25 2017: (Start)
There are 2 primes in the first 1000 terms of A284377, a(3) = 11681 and a(637) = 11681256...164648481361 (which has 6368 digits).
Let cp(k, n) denote the concatenation of the first n k-th powers. Note that there are no primes in cp(1, n) = A007908(n) up to n = 64000 or cp(3, n) = A019522(n) up to n = 31152. But there is a prime in cp(2, n) = A019521(n): cp(2, 3) = A019521(3) = 149. Conjecture: if k is odd, no "smaller primes" (< 10000 digits, or non-gigantic primes) exist in cp(k, n); if k is even, then such primes may occur. So far, the expanded search supports this conjecture. For k from 5 to 500, when k is an odd number, we have found no "smaller primes" in cp(k, n); for even k, the following primes have been found:
k = 6, cp(6, 3) = 164729.
k = 10, cp(10, 3) = 1102459049.
k = 18, cp(18, 3) = 1262144387420489.
k = 72, cp(72, 3) = 1472236648286964521369622528399544939174411840147874772641.
k = 76, cp(76, 3) = 1755578637259143234191361824800363140073127359051977856583921.
k = 108, cp(108, 3) = 13245185536...198527451848561 (a 86-digit prime).
k = 124, cp(124, 7) = 12126764793...315965558474401 (a 463-digit prime).
k = 432, cp(432, 7) = 11109067877...198797825539201 (a 1605-digit prime).
However, the next search contradicted the above conjecture. For k from 501 to 1100, we get two counterexamples:
k = 543, cp(543,13) = 12879304828...134856329859397 (a 5325-digit prime).
k = 815, cp(815,7) = 12184974969...385767566149943 (a 3021-digit prime).
And finally, by testing all cp(k, n) less than 10^10000 (using Mathematica's "PrimeQ[*]" function), it is confirmed that there are 15 "smaller primes" in all concatenations of k-th powers (k >= 1), of which 13 are listed above, and the other two are
k = 2140, cp(2140, 3) = 11600260630...045844060490801 (a 1608-digit prime) and
k = 2176, cp(2176, 3) = 11099690731...621473725585921 (a 1696-digit prime). (End)

Crossrefs

A038398 Concatenate first n cubes in reverse order.

Original entry on oeis.org

1, 81, 2781, 642781, 125642781, 216125642781, 343216125642781, 512343216125642781, 729512343216125642781, 1000729512343216125642781, 13311000729512343216125642781, 172813311000729512343216125642781
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

References

  • Mihaly Bencze [Beneze], L. Tutescu, Some Notions and Questions in Number Theory, Sequence 6.

Crossrefs

Programs

  • Mathematica
    nn=20;With[{c=Reverse[Range[nn]^3]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[ c,-n]]],{n,nn}]] (* Harvey P. Dale, Sep 28 2013 *)

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000

A266368 The smallest prime formed by the concatenation of consecutive n-th powers beginning with "1," plus a trailing "1.".

Original entry on oeis.org

11, 1231, 149161, 181, 1168125662512961, 1321, 1647294096156251, 11282187163847812527993682354320971524782969100000001948717135831808627485171, 125665616553639062516796161, 15121
Offset: 0

Views

Author

Thomas S. Pedigo, Dec 28 2015

Keywords

Comments

a(10) has 437 and a(11) has 1810 decimal digits respectively. - Michael De Vlieger, Jan 05 2016
a(13) is a bit more manageable, with 65 decimal digits - 18192159432367108864122070312513060694016968890104075497558138881. a(14) and a(15) are even shorter, with 23 and 15 decimal digits, respectively - 11638447829692684354561 and 132768143489071. - Thomas S. Pedigo, Jan 06 2016

Examples

			a(6)=1647294096156251; 1=1^6; 64=2^6; 729=3^6; 4096=4^6; 15625=5^6; 1647294096156251 is prime.
		

Crossrefs

Programs

  • Mathematica
    f[k_, n_] := FromDigits@ Flatten@ Map[IntegerDigits, Append[Range[k + 1]^n, 1], 1]; Table[If[n == 0, k = 0, k = 1]; While[! PrimeQ@ f[k, n], k++]; f[k, n], {n, 0, 9}] (* Michael De Vlieger, Jan 05 2016 *)

A326120 a(n) is the concatenation of n^1, n^2, ..., n^n.

Original entry on oeis.org

1, 24, 3927, 41664256, 5251256253125, 6362161296777646656, 749343240116807117649823543, 864512409632768262144209715216777216, 981729656159049531441478296943046721387420489, 10100100010000100000100000010000000100000000100000000010000000000
Offset: 1

Views

Author

Trevor Mulindi, Sep 10 2019

Keywords

Comments

a(100) has 10200 digits.
a(n) is the concatenation of the n terms of the n-th row of A075363 triangle. - Michel Marcus, Sep 15 2019

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(n^j$j=1..n)):
    seq(a(n), n=1..14);  # Alois P. Heinz, Jan 24 2021
  • Mathematica
    a[n_] := FromDigits@ Flatten@ IntegerDigits[n^Range[n]]; Array[a, 10] (* Giovanni Resta, Sep 12 2019 *)
  • Python
    def a(n): return int("".join(str(n**i) for i in range(1, n+1)))
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Jan 24 2021

Extensions

More terms from Giovanni Resta, Sep 12 2019
Showing 1-8 of 8 results.