A067103 a(n) = floor(X/Y), where X = concatenation of cubes and Y = concatenation of natural numbers.
1, 1, 14, 148, 14804, 1480398, 148039049, 14803895356, 1480389427723, 148038942652481, 14803894265116205, 1480389426511476635, 148038942651147507639, 14803894265114750596056, 1480389426511475059425814, 148038942651147505942389607, 14803894265114750594238756940
Offset: 1
Examples
a(6) = floor(182764125216/123456) = floor(1480398.888802...) = 1480398.
Crossrefs
Programs
-
Maple
a:= n-> floor(parse(cat(i^3$i=1..n))/parse(cat($1..n))): seq(a(n), n=1..17); # Alois P. Heinz, May 25 2022
-
Mathematica
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^3]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ] nn=20;With[{c=Table[IntegerDigits[n^3],{n,nn}],s=Table[IntegerDigits[n],{n,nn}]}, Table[Floor[FromDigits[Flatten[Take[c,i]]]/FromDigits[Flatten[Take[s,i]]]],{i,nn}]] (* Harvey P. Dale, Feb 10 2013 *)
-
PARI
c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908 c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522 a(n) = c3(n)\c1(n); \\ Michel Marcus, May 25 2022
Comments