cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A038399 Concatenate first n nonzero Fibonacci numbers in reverse order.

Original entry on oeis.org

1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, 342113853211, 55342113853211, 8955342113853211, 1448955342113853211, 2331448955342113853211, 3772331448955342113853211, 6103772331448955342113853211, 9876103772331448955342113853211
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

References

  • Mihaly Bencze [Beneze], L. Tutescu, Some Notions and Questions in Number Theory, Sequence 7.

Crossrefs

Programs

  • Haskell
    a038399 n = a038399_list !! (n-1)
    a038399_list = h "" $ tail a000045_list where
       h xs (f:fs) = (read ys :: Integer) : h ys fs
         where ys = show f ++ xs
    -- Reinhard Zumkeller, Mar 01 2014
    
  • Mathematica
    Module[{nn=20,fibs},fibs=Fibonacci[Range[nn]];Table[FromDigits[ Flatten[ IntegerDigits/@ Reverse[Take[fibs,n]]]],{n,nn}]] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    a(n) = my(t=fibonacci(n)); forstep(k=n-1, 1, -1, t=t*10^#Str(fibonacci(k))+fibonacci(k)); t; \\ Michel Marcus, Apr 06 2024

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000
Offset changed by Reinhard Zumkeller, Mar 01 2014
More terms from Harvey P. Dale, Aug 30 2016

A094704 Convolution of Fibonacci(n) and 10^n.

Original entry on oeis.org

0, 1, 11, 112, 1123, 11235, 112358, 1123593, 11235951, 112359544, 1123595495, 11235955039, 112359550534, 1123595505573, 11235955056107, 112359550561680, 1123595505617787, 11235955056179467, 112359550561797254
Offset: 0

Views

Author

Paul Barry, May 21 2004

Keywords

Comments

The convolution of Fibonacci(n) and k^n for k > 1 has a(n) = (1/k^2 - k -1))*(2*k^(n+1) - k*Lucas(n) - (k+2)*Fibonacci(n)).

Crossrefs

Programs

  • Magma
    [(10^(n+1) -Fibonacci(n+3) -8*Fibonacci(n+1))/89: n in [0..30]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    CoefficientList[Series[x/((1-x-x^2)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[ {11,-9,-10},{0,1,11},20] (* Harvey P. Dale, Mar 18 2013 *)
  • SageMath
    def A094704(n): return (10^(n+1) -fibonacci(n+3) -8*fibonacci(n+1))/89
    [A094704(n) for n in range(31)] # G. C. Greubel, Feb 09 2023

Formula

G.f. : x/((1-10*x)*(1-x-x^2)).
a(n) = (1/89)*( 10^(n+1) - 5*( ((1 + sqrt(5))/2)^n + ((1 - sqrt(5))/2)^n ) - (6/sqrt(5))*( ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ) ).
a(n) = 10*a(n-1) + Fibonacci(n) for n >= 1. - Mark Dols, Aug 31 2009
a(n) = 11*a(n-1) - 9*a(n-2) - 10*a(n-3), n > 2. - Harvey P. Dale, Mar 18 2013
a(n) = (1/89)*( 10^(n+1) - Fibonacci(n+3) - 8*Fibonacci(n+1) ). - G. C. Greubel, Feb 09 2023

A134069 Primes in A038399.

Original entry on oeis.org

11, 211, 853211
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A038399 = {1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, ...} = concatenation of first n nonzero Fibonacci numbers in reverse order.
From Robert Israel, Sep 14 2016: (Start)
No more terms < A038399(500), which has 26252 digits.
The probability of a number of the order of magnitude of A038399(n) being prime is approximately constant/n^2. Since Sum_n 1/n^2 converges, we should expect this sequence to be finite. (End)

Crossrefs

Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A019523 (concatenation of Fibonacci numbers).

Programs

  • Maple
    count:= 0:
    A038399[1]:= 1:
    for n from 2 to 100 do
    A038399[n]:= combinat:-fibonacci(n)*10^(1+ilog10(A038399[n-1]))+A038399[n-1];
       if isprime(A038399[n]) then count:= count+1; A[count]:= A038399[n] fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Sep 14 2016
  • Mathematica
    Module[{nn=10,bif},bif=Fibonacci[Range[nn]];Select[Table[FromDigits[ Flatten[ IntegerDigits/@Reverse[Take[bif,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Sep 27 2019 *)

A134072 Concatenation of A000204 Lucas numbers (beginning at 1) in reverse order.

Original entry on oeis.org

1, 31, 431, 7431, 117431, 18117431, 2918117431, 472918117431, 76472918117431, 12376472918117431, 19912376472918117431, 32219912376472918117431, 52132219912376472918117431, 84352132219912376472918117431
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

Indices of prime terms are {2, 3, 5, 11, ...}. Primes are listed in A134071 = {31, 431, 117431, 19912376472918117431, ...}.

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134070 (primes in A130774).
Cf. A134071 (primes in A134072).

Programs

  • Mathematica
    Module[{nn=20,lnos},lnos=LucasL[Range[nn]];Table[FromDigits[Flatten[ IntegerDigits/@ Reverse[Take[lnos,n]]]],{n,nn}]] (* Harvey P. Dale, Jul 27 2015 *)

Extensions

Edited by Charles R Greathouse IV, Apr 26 2010

A134732 Concatenation of first n members of the Padovan sequence A000931, starting at (1, 1, 1, 2,).

Original entry on oeis.org

1, 11, 111, 1112, 11122, 111223, 1112234, 11122345, 111223457, 1112234579, 111223457912, 11122345791216, 1112234579121621, 111223457912162128, 11122345791216212837, 1112234579121621283749, 111223457912162128374965
Offset: 1

Views

Author

Omar E. Pol, Nov 10 2007

Keywords

Crossrefs

Cf. A000931, A007908, A019523, A102397. See A132347 for another version.

Programs

  • Mathematica
    Module[{nn=20,padseq},padseq=LinearRecurrence[{0,1,1},{1,1,1,2},nn];Table[ FromDigits[ Flatten[IntegerDigits/@Take[padseq,n]]],{n,nn}]] (* Harvey P. Dale, Feb 18 2023 *)

A134070 Primes in A130774.

Original entry on oeis.org

13, 13471118294776123, 134711182947761231993225218431364220735715778934915127244763960364079103682167761271443439204710647114985118604983010349
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A130774 = {1, 13, 134, 1347, 134711, 13471118, 1347111829, 134711182947, 13471118294776, 13471118294776123, ...} = Concatenate Lucas numbers. Indices of prime terms in A130774 are {2, 10, 31, ...}.
a(4) > A130774(500) = 1.347...*10^26425, if it exists. - Amiram Eldar, Jul 17 2025

Examples

			a(1) = A130774(2) = 13.
a(2) = A130774(10) = 13471118294776123.
a(3) = A130774(31) = 13471118294776123199322521843136422073571577893491512724476396036407910368216776127144343920471064711498511860498301034.
		

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134072 (concatenation of A000204 Lucas numbers (beginning at 1) in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134071 (primes in A134072).

Programs

  • Mathematica
    Select[Module[{nn=40,ll},ll=LucasL[Range[nn]];Table[FromDigits[Flatten[IntegerDigits/@Take[ll,n]]],{n,nn}]],PrimeQ] (* Harvey P. Dale, May 07 2023 *)

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A134071 Primes in A134072.

Original entry on oeis.org

31, 431, 117431, 19912376472918117431
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A134072 = {1, 31, 431, 7431, 117431, 18117431, 2918117431, 472918117431, 76472918117431, 12376472918117431, 19912376472918117431, ...} = concatenation of Lucas numbers in reverse order. Indices of prime terms in A134072 are {2, 3, 5, 11, ...}.
No further terms through 500 Lucas numbers. - Harvey P. Dale, Aug 17 2013

Examples

			a(1) = A134072(2) = 31.
a(2) = A134072(3) = 431.
a(3) = A134072(5) = 117431.
		

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134072 (concatenation of A000204 Lucas numbers (beginning at 1) in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134070 (primes in A130774).

Programs

  • Mathematica
    nn=500;With[{lucs=LucasL[Range[nn]]},Select[Table[FromDigits[ Flatten[ IntegerDigits/@ Reverse[ Take[lucs,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A132347 Concatenation of first n members of the Padovan sequence A000931.

Original entry on oeis.org

1, 10, 100, 1001, 10010, 100101, 1001011, 10010111, 100101112, 1001011122, 10010111223, 100101112234, 1001011122345, 10010111223457, 100101112234579, 10010111223457912, 1001011122345791216, 100101112234579121621
Offset: 1

Views

Author

Omar E. Pol, Nov 10 2007

Keywords

Crossrefs

Cf. A000931, A007908, A019523, A102397. See A134732 for another version.

Programs

  • Mathematica
    Module[{nn=20,padseq},padseq=LinearRecurrence[{0,1,1},{1,0,0},nn];Table[FromDigits[ Flatten[ IntegerDigits/@Take[padseq,n]]],{n,nn}]] (* Harvey P. Dale, Feb 18 2024 *)

A329719 Numbers whose digits can be partitioned into at least 3 segments (not beginning with 0) where each segment is the sum of the previous two segments.

Original entry on oeis.org

112, 123, 134, 145, 156, 167, 178, 189, 213, 224, 235, 246, 257, 268, 279, 314, 325, 336, 347, 358, 369, 415, 426, 437, 448, 459, 516, 527, 538, 549, 617, 628, 639, 718, 729, 819, 1123, 1235, 1347, 1459, 1910, 2134, 2246, 2358, 2810, 2911, 3145, 3257, 3369
Offset: 1

Views

Author

Bi Cheng Wu, Nov 19 2019

Keywords

Examples

			112 -> 1+1=2;
1235 -> 1+2=3 and 2+3=5;
224610 -> 2+2=4 and 2+4=6 and 4+6=10.
		

Crossrefs

Shares subsequences with A108203, A308104, A214527.
Cf. A019523.

Programs

  • Mathematica
    part[n_] := part[n] = Select[Flatten[ Permutations /@ Reverse /@ IntegerPartitions[n, {3,n}], 1], 0 <= #[[3]] - Max[#[[1]], #[[2]]] <= 1 && AllTrue[Rest@ Rest@ Differences@ #, 0 <= # <= 1 &] &]; spl[x_, L_] := Map[ FromDigits@ Take[x, #] &, Transpose[{Most@ #, Rest[#]-1}& [ FoldList[ Plus, 1, L]]]]; sumQ[w_] := AllTrue[Range[3, Length@w], w[[#]] == w[[#-1]] + w[[#-2]] &]; ok[n_] := Block[{m = IntegerLength@ n}, AnyTrue[ spl[ IntegerDigits[n], #] & /@ part[m], sumQ[#] && Total[ IntegerLength /@ #] == m &]]; Select[ Range[100, 6000], ok] (* Giovanni Resta, Dec 03 2019 *)
  • Python
    def isSegmentSum(digits,segment1=None,segment2=None):
        digits = str(digits)
        N = len(digits)
        if N == 0:
            return True
        else:
            if (segment1 is None) and (segment2 is None):
                for i in range(N):
                    try:
                        slice1 = digits[:i+1]
                        for j in range(N-(i+1)):
                            slice2 = digits[i+1:i+1+j+1]
                            slice3 = digits[i+1+j+1:]
                            if (isSegmentSum(slice3,slice1,slice2) and
                             len(slice3)>0 and not (slice1.startswith("0") or
                             slice2.startswith("0") or
                             (slice3.startswith("0")))):
                                return True
                    except:
                        return False
            else:
                sumOfDigits = str(int(segment1)+int(segment2))
                nS = len(sumOfDigits)
                try:
                    if digits[:nS] == sumOfDigits:
                        return isSegmentSum(digits[nS:],segment2,digits[:nS])
                    else:
                        return False
                except:
                    return False
        return False
    def findSegmentSum(lower,upper):
        for i in range(lower,upper+1):
            if isSegmentSum(i):
                print(str(i))
    findSegmentSum(1, 5200)
Showing 1-9 of 9 results.