cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134069 Primes in A038399.

Original entry on oeis.org

11, 211, 853211
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A038399 = {1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, ...} = concatenation of first n nonzero Fibonacci numbers in reverse order.
From Robert Israel, Sep 14 2016: (Start)
No more terms < A038399(500), which has 26252 digits.
The probability of a number of the order of magnitude of A038399(n) being prime is approximately constant/n^2. Since Sum_n 1/n^2 converges, we should expect this sequence to be finite. (End)

Crossrefs

Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A019523 (concatenation of Fibonacci numbers).

Programs

  • Maple
    count:= 0:
    A038399[1]:= 1:
    for n from 2 to 100 do
    A038399[n]:= combinat:-fibonacci(n)*10^(1+ilog10(A038399[n-1]))+A038399[n-1];
       if isprime(A038399[n]) then count:= count+1; A[count]:= A038399[n] fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Sep 14 2016
  • Mathematica
    Module[{nn=10,bif},bif=Fibonacci[Range[nn]];Select[Table[FromDigits[ Flatten[ IntegerDigits/@Reverse[Take[bif,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Sep 27 2019 *)

A371720 a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.

Original entry on oeis.org

1, 11, 811, 3811, 63811, 763811, 3763811, 5103763811, 515103763811, 19515103763811, 6819515103763811, 8146819515103763811, 3808146819515103763811, 7213808146819515103763811, 9807213808146819515103763811, 4939807213808146819515103763811
Offset: 1

Views

Author

Marco Ripà, Apr 04 2024

Keywords

Comments

For any n, a(n) == a(n + 1) (mod 10^len(A038399(n))), where len(k) := number of digits in k. Assuming len(a(n)) > 1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925, A061839, A092845, and A104759), as shown in Ripà's book "La strana coda della serie n^n^...^n".
Moreover, assuming n > 1, since A038399(n) is congruent to 11 (mod 20), the convergence speed of A038399(n)^^b (say, V(A038399(n), b) = {2, 1, 1, 1, ...}) is 2 at height 1 and becomes a unit value for any integer b > 1 (see Links). Hence, a(n) is given by A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))), and also by A038399(n)^^len(A038399(n)) (mod 10^len(A038399(n))) since A038399(n)^^len(A038399(n)) == A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))) holds for any n.

Examples

			a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A000045 (Fibonacci), A038399, A171882 (tetration), A317824, A317903, A317905.

Formula

a(n) = A038399(n)^^(len(A038399(n)) - 1) mod 10^len(A038399(n)), where len(A038399(n)) = ceiling(log_10(A038399(n) + 1)).

A019523 Concatenation of Fibonacci(1) through Fibonacci(n).

Original entry on oeis.org

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, 11235813213455, 1123581321345589, 1123581321345589144, 1123581321345589144233, 1123581321345589144233377, 1123581321345589144233377610, 1123581321345589144233377610987
Offset: 1

Views

Author

R. Muller

Keywords

Comments

For n<=800, only a(2) and a(4) are primes. - Dmitry Kamenetsky, Feb 25 2009
a(n) has about kn(n+1) digits, where k = log phi/log 100 = 0.10449... - Charles R Greathouse IV, Sep 19 2012

References

  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Programs

  • Haskell
    a019523 n = read $ concatMap show $ take n $ tail a000045_list :: Integer
    -- Reinhard Zumkeller, Mar 01 2014
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(Fibonacci(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Dec 18 2016
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[Fibonacci[Range[n]]]]], {n,25}] (* G. C. Greubel, Nov 30 2016 *)

Formula

a(n) = a(n-1)*10^A055642(A000045(n)) + A000045(n). - José de Jesús Camacho Medina, Dec 16 2016

A038395 Concatenation of the first n odd numbers in reverse order.

Original entry on oeis.org

1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 191715131197531, 21191715131197531, 2321191715131197531, 252321191715131197531, 27252321191715131197531, 2927252321191715131197531, 312927252321191715131197531
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

Comments

a(n) starts with the digits of 2n-1. Indices of prime or probable prime terms are 1,2,37,62,409,...: see also A089922. - M. F. Hasler, Apr 13 2008
If n == 0 (mod 3), so is a(n). - Sergey Pavlov, Mar 29 2017

References

  • Mihaly Bencze [Beneze] and L. Tutescu, Some Notions and Questions in Number Theory, Sequence 3.

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@Join[Reverse[Range[1,n,2]]]]], {n,1,29,2}] (* Harvey P. Dale, Jun 02 2011 *)
  • PARI
    t=""; for( n=1,10^3, ( t=eval( Str( 2*n-1,t))) & print(n" "t)) \\ M. F. Hasler, Apr 13 2008
    
  • Python
    def a(n): return int("".join(map(str, range(2*n-1, 0, -2))))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Jan 31 2021

Extensions

Edited and extended by M. F. Hasler, Apr 13 2008
Edited by T. D. Noe, Oct 30 2008

A134072 Concatenation of A000204 Lucas numbers (beginning at 1) in reverse order.

Original entry on oeis.org

1, 31, 431, 7431, 117431, 18117431, 2918117431, 472918117431, 76472918117431, 12376472918117431, 19912376472918117431, 32219912376472918117431, 52132219912376472918117431, 84352132219912376472918117431
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

Indices of prime terms are {2, 3, 5, 11, ...}. Primes are listed in A134071 = {31, 431, 117431, 19912376472918117431, ...}.

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134070 (primes in A130774).
Cf. A134071 (primes in A134072).

Programs

  • Mathematica
    Module[{nn=20,lnos},lnos=LucasL[Range[nn]];Table[FromDigits[Flatten[ IntegerDigits/@ Reverse[Take[lnos,n]]]],{n,nn}]] (* Harvey P. Dale, Jul 27 2015 *)

Extensions

Edited by Charles R Greathouse IV, Apr 26 2010

A134070 Primes in A130774.

Original entry on oeis.org

13, 13471118294776123, 134711182947761231993225218431364220735715778934915127244763960364079103682167761271443439204710647114985118604983010349
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A130774 = {1, 13, 134, 1347, 134711, 13471118, 1347111829, 134711182947, 13471118294776, 13471118294776123, ...} = Concatenate Lucas numbers. Indices of prime terms in A130774 are {2, 10, 31, ...}.
a(4) > A130774(500) = 1.347...*10^26425, if it exists. - Amiram Eldar, Jul 17 2025

Examples

			a(1) = A130774(2) = 13.
a(2) = A130774(10) = 13471118294776123.
a(3) = A130774(31) = 13471118294776123199322521843136422073571577893491512724476396036407910368216776127144343920471064711498511860498301034.
		

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134072 (concatenation of A000204 Lucas numbers (beginning at 1) in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134071 (primes in A134072).

Programs

  • Mathematica
    Select[Module[{nn=40,ll},ll=LucasL[Range[nn]];Table[FromDigits[Flatten[IntegerDigits/@Take[ll,n]]],{n,nn}]],PrimeQ] (* Harvey P. Dale, May 07 2023 *)

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A134071 Primes in A134072.

Original entry on oeis.org

31, 431, 117431, 19912376472918117431
Offset: 1

Views

Author

Alexander Adamchuk, Oct 06 2007

Keywords

Comments

A134072 = {1, 31, 431, 7431, 117431, 18117431, 2918117431, 472918117431, 76472918117431, 12376472918117431, 19912376472918117431, ...} = concatenation of Lucas numbers in reverse order. Indices of prime terms in A134072 are {2, 3, 5, 11, ...}.
No further terms through 500 Lucas numbers. - Harvey P. Dale, Aug 17 2013

Examples

			a(1) = A134072(2) = 31.
a(2) = A134072(3) = 431.
a(3) = A134072(5) = 117431.
		

Crossrefs

Cf. A000204 (Lucas numbers).
Cf. A130774 (concatenation of Lucas numbers).
Cf. A019523 (concatenation of Fibonacci numbers).
Cf. A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf. A134072 (concatenation of A000204 Lucas numbers (beginning at 1) in reverse order).
Cf. A134069 (primes in A038399).
Cf. A134070 (primes in A130774).

Programs

  • Mathematica
    nn=500;With[{lucs=LucasL[Range[nn]]},Select[Table[FromDigits[ Flatten[ IntegerDigits/@ Reverse[ Take[lucs,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Showing 1-7 of 7 results.