Original entry on oeis.org
11, 211, 853211
Offset: 1
Cf.
A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf.
A019523 (concatenation of Fibonacci numbers).
-
count:= 0:
A038399[1]:= 1:
for n from 2 to 100 do
A038399[n]:= combinat:-fibonacci(n)*10^(1+ilog10(A038399[n-1]))+A038399[n-1];
if isprime(A038399[n]) then count:= count+1; A[count]:= A038399[n] fi
od:
seq(A[i],i=1..count); # Robert Israel, Sep 14 2016
-
Module[{nn=10,bif},bif=Fibonacci[Range[nn]];Select[Table[FromDigits[ Flatten[ IntegerDigits/@Reverse[Take[bif,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Sep 27 2019 *)
A371720
a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.
Original entry on oeis.org
1, 11, 811, 3811, 63811, 763811, 3763811, 5103763811, 515103763811, 19515103763811, 6819515103763811, 8146819515103763811, 3808146819515103763811, 7213808146819515103763811, 9807213808146819515103763811, 4939807213808146819515103763811
Offset: 1
a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
- Wikipedia, Tetration.
A019523
Concatenation of Fibonacci(1) through Fibonacci(n).
Original entry on oeis.org
1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, 11235813213455, 1123581321345589, 1123581321345589144, 1123581321345589144233, 1123581321345589144233377, 1123581321345589144233377610, 1123581321345589144233377610987
Offset: 1
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
-
a019523 n = read $ concatMap show $ take n $ tail a000045_list :: Integer
-- Reinhard Zumkeller, Mar 01 2014
-
[Seqint(Reverse(&cat[Reverse(Intseq(Fibonacci(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Dec 18 2016
-
Table[FromDigits[Flatten[IntegerDigits[Fibonacci[Range[n]]]]], {n,25}] (* G. C. Greubel, Nov 30 2016 *)
A038395
Concatenation of the first n odd numbers in reverse order.
Original entry on oeis.org
1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 191715131197531, 21191715131197531, 2321191715131197531, 252321191715131197531, 27252321191715131197531, 2927252321191715131197531, 312927252321191715131197531
Offset: 1
M. I. Petrescu (mipetrescu(AT)yahoo.com)
- Mihaly Bencze [Beneze] and L. Tutescu, Some Notions and Questions in Number Theory, Sequence 3.
-
Table[FromDigits[Flatten[IntegerDigits/@Join[Reverse[Range[1,n,2]]]]], {n,1,29,2}] (* Harvey P. Dale, Jun 02 2011 *)
-
t=""; for( n=1,10^3, ( t=eval( Str( 2*n-1,t))) & print(n" "t)) \\ M. F. Hasler, Apr 13 2008
-
def a(n): return int("".join(map(str, range(2*n-1, 0, -2))))
print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Jan 31 2021
A134072
Concatenation of A000204 Lucas numbers (beginning at 1) in reverse order.
Original entry on oeis.org
1, 31, 431, 7431, 117431, 18117431, 2918117431, 472918117431, 76472918117431, 12376472918117431, 19912376472918117431, 32219912376472918117431, 52132219912376472918117431, 84352132219912376472918117431
Offset: 1
Cf.
A130774 (concatenation of Lucas numbers).
Cf.
A019523 (concatenation of Fibonacci numbers).
Cf.
A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
-
Module[{nn=20,lnos},lnos=LucasL[Range[nn]];Table[FromDigits[Flatten[ IntegerDigits/@ Reverse[Take[lnos,n]]]],{n,nn}]] (* Harvey P. Dale, Jul 27 2015 *)
Original entry on oeis.org
13, 13471118294776123, 134711182947761231993225218431364220735715778934915127244763960364079103682167761271443439204710647114985118604983010349
Offset: 1
a(1) = A130774(2) = 13.
a(2) = A130774(10) = 13471118294776123.
a(3) = A130774(31) = 13471118294776123199322521843136422073571577893491512724476396036407910368216776127144343920471064711498511860498301034.
Cf.
A130774 (concatenation of Lucas numbers).
Cf.
A019523 (concatenation of Fibonacci numbers).
Cf.
A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf.
A134072 (concatenation of
A000204 Lucas numbers (beginning at 1) in reverse order).
-
Select[Module[{nn=40,ll},ll=LucasL[Range[nn]];Table[FromDigits[Flatten[IntegerDigits/@Take[ll,n]]],{n,nn}]],PrimeQ] (* Harvey P. Dale, May 07 2023 *)
Original entry on oeis.org
31, 431, 117431, 19912376472918117431
Offset: 1
a(1) = A134072(2) = 31.
a(2) = A134072(3) = 431.
a(3) = A134072(5) = 117431.
Cf.
A130774 (concatenation of Lucas numbers).
Cf.
A019523 (concatenation of Fibonacci numbers).
Cf.
A038399 (concatenation of first n nonzero Fibonacci numbers in reverse order).
Cf.
A134072 (concatenation of
A000204 Lucas numbers (beginning at 1) in reverse order).
-
nn=500;With[{lucs=LucasL[Range[nn]]},Select[Table[FromDigits[ Flatten[ IntegerDigits/@ Reverse[ Take[lucs,n]]]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
Showing 1-7 of 7 results.
Comments