cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A017593 a(n) = 12*n + 6.

Original entry on oeis.org

6, 18, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 318, 330, 342, 354, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 486, 498, 510, 522, 534, 546, 558, 570, 582, 594, 606, 618, 630, 642
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(73).
Continued fraction expansion of tanh(1/6). - Benoit Cloitre, Dec 17 2002
Also solutions to 5^x + 7^x == 11 (mod 13). - Cino Hilliard, May 10 2003
Numbers m such that the sum of the m-th powers of all 2 X 2 matrices over Z/mZ is a nonzero matrix. - José María Grau Ribas, Jan 31 2014
Positive numbers k for which 1/2 + k/4 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018

Crossrefs

Programs

Formula

A030133(a(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
a(n) = 24*n - a(n-1) with n > 0, a(0)=6. - Vincenzo Librandi, Nov 19 2010
a(0)=6, a(1)=18; for n > 1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Aug 20 2014
G.f.: 6*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/24 (A019691). - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(5*Pi/24).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(5*Pi/24). (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(1 + 2*x).
a(n) = 6*A005408(n) = 3*A016825(n) = 2*A016945(n). (End)

Extensions

Typos in sequence (270 was 2,70 and 510 was 5,10) fixed by Peter Luschny, Dec 14 2009

A120683 Decimal expansion of secant of 15 degrees (cosecant of 75 degrees).

Original entry on oeis.org

1, 0, 3, 5, 2, 7, 6, 1, 8, 0, 4, 1, 0, 0, 8, 3, 0, 4, 9, 3, 9, 5, 5, 9, 5, 3, 5, 0, 4, 9, 6, 1, 9, 3, 3, 1, 3, 3, 9, 6, 2, 7, 5, 6, 0, 5, 2, 7, 9, 7, 2, 2, 0, 5, 5, 2, 5, 6, 0, 1, 2, 8, 2, 9, 2, 6, 0, 2, 2, 7, 8, 9, 8, 9, 9, 5, 2, 0, 7, 9, 8, 7, 6, 8, 9, 4, 7, 1, 8, 9, 8, 7, 7, 6, 9, 9, 8, 6, 6, 2, 0, 8, 3, 5, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jun 24 2006

Keywords

Comments

Side length of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link).
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			1.03527618041008304939559535049619331339627560527972...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

Formula

Equals sec(Pi/12) = sec(A019679) = sqrt(6) - sqrt(2) = A010464 - A002193 = csc(5*Pi/12) = 1/sin(5*Pi/12) = 1/sin(10*A019691) = 1/A019884.
Equals Product_{k >= 1} 1/(1 - 1/(36*(2*k - 1)^2)). - Antonio Graciá Llorente, Mar 20 2024
From Amiram Eldar, Nov 24 2024: (Start)
Equals 2*A101263.
Equals Product_{k>=1} (1 - (-1)^k/A092242(k)). (End)
Smallest positive of the 4 real-valued roots of x^4-16*x^2+16=0. - R. J. Mathar, Aug 31 2025

A130590 Decimal expansion of the mean Euclidean distance from a point in the unit 3D cube to a given vertex of the cube.

Original entry on oeis.org

9, 6, 0, 5, 9, 1, 9, 5, 6, 4, 5, 5, 0, 5, 2, 9, 5, 9, 4, 2, 5, 1, 0, 7, 9, 5, 1, 3, 9, 3, 8, 0, 6, 3, 6, 0, 2, 4, 0, 9, 7, 6, 9, 0, 7, 5, 4, 5, 7, 2, 3, 9, 8, 7, 6, 9, 0, 8, 9, 8, 5, 1, 5, 3, 1, 0, 3, 8, 7, 6, 6, 3, 3, 4, 0, 1, 6, 3, 2, 8, 9, 0, 3, 1, 2, 2, 7, 9, 3, 5, 6, 9, 1, 7, 7, 4, 8, 2, 4, 5, 3, 1, 2, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2007

Keywords

Examples

			0.960591956455052959425107951...
		

Crossrefs

Analogous constants: A244921 (square), A254979 (4-cube).

Programs

  • Maple
    evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);
  • Mathematica
    RealDigits[Sqrt[3]/4 + Log[2+Sqrt[3]]/2 - Pi/24, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)

Formula

Equals sqrt(3)/4 + log(2+sqrt(3))/2 - Pi/24 = A010527/2 + A065914/2 - A019691.
Equals 2 * A135691. - Amiram Eldar, Jun 04 2023

Extensions

Name corrected by Amiram Eldar, Jun 04 2023
Showing 1-3 of 3 results.