cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A019819 Decimal expansion of sine of 10 degrees.

Original entry on oeis.org

1, 7, 3, 6, 4, 8, 1, 7, 7, 6, 6, 6, 9, 3, 0, 3, 4, 8, 8, 5, 1, 7, 1, 6, 6, 2, 6, 7, 6, 9, 3, 1, 4, 7, 9, 6, 0, 0, 0, 3, 7, 5, 6, 7, 7, 1, 8, 4, 0, 6, 9, 3, 8, 7, 2, 3, 6, 2, 4, 1, 3, 7, 8, 1, 3, 2, 0, 6, 5, 8, 2, 2, 1, 3, 9, 0, 1, 4, 7, 3, 5, 4, 2, 1, 5, 1, 6, 6, 1, 3, 1, 5, 7, 3, 9, 9, 5, 7, 4
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/9). - Stanislav Sykora, Apr 25 2012

Examples

			0.173648177...
		

Crossrefs

Cf. A019814.

Programs

Formula

Equals cos(4*Pi/9) = 2F1(7/6,-1/6;1/2;3/4) / 2 = - 2F1(4/3,-1/3;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
From Artur Jasinski, Oct 28 2008: (Start)
Decimal expansion of root of cubic polynomial 1 - 6*x + 8*x^3. (Others A019859, -A019879)
Decimal expansion of casus irreducibilis:
(1/2) * (((-i*sqrt(3) - 1)/2)^(2/3) + ((i*sqrt(3) - 1)/2)^(2/3)). (End)
Equals 2 * A019814 * A019894. - R. J. Mathar, Jan 17 2021
This^2 + A019889^2 = 1. - R. J. Mathar, Aug 31 2025

A019824 Decimal expansion of sine of 15 degrees.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 0, 4, 5, 1, 0, 2, 5, 2, 0, 7, 6, 2, 3, 4, 8, 8, 9, 8, 8, 3, 7, 6, 2, 4, 0, 4, 8, 3, 2, 8, 3, 4, 9, 0, 6, 8, 9, 0, 1, 3, 1, 9, 9, 3, 0, 5, 1, 3, 8, 1, 4, 0, 0, 3, 2, 0, 7, 3, 1, 5, 0, 5, 6, 9, 7, 4, 7, 4, 8, 8, 0, 1, 9, 9, 6, 9, 2, 2, 3, 6, 7, 9, 7, 4, 6, 9, 4, 2, 4, 9, 6, 6, 5
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/6). - Stanislav Sykora, Apr 25 2012

Examples

			0.258819045102520762348898837624048328349068901319930513814003207315...
		

Crossrefs

Programs

Formula

Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - R. J. Mathar, Jun 18 2006
Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - R. J. Mathar, Oct 27 2008
Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - Amiram Eldar, Aug 05 2020
This^2 + A019884^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of 16*x^4-16*x^2+1=0. - R. J. Mathar, Aug 31 2025

A019894 Decimal expansion of sine of 85 degrees.

Original entry on oeis.org

9, 9, 6, 1, 9, 4, 6, 9, 8, 0, 9, 1, 7, 4, 5, 5, 3, 2, 2, 9, 5, 0, 1, 0, 4, 0, 2, 4, 7, 3, 8, 8, 8, 0, 4, 6, 1, 8, 3, 5, 6, 2, 6, 7, 2, 6, 4, 5, 8, 5, 0, 9, 7, 4, 5, 2, 5, 4, 4, 2, 2, 7, 7, 3, 8, 0, 1, 1, 6, 7, 4, 9, 8, 3, 8, 2, 5, 1, 5, 9, 9, 6, 7, 4, 1, 8, 6, 3, 8, 6, 2, 5, 9, 6, 5, 1, 9, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[17*Pi/36],10,99][[1]] (* Stefano Spezia, Feb 09 2025 *)

Formula

Equals cos(Pi/36) = 2F1(13/24,11/24;1/2;3/4) / 2 . - R. J. Mathar, Oct 27 2008

A019874 Decimal expansion of sine of 65 degrees.

Original entry on oeis.org

9, 0, 6, 3, 0, 7, 7, 8, 7, 0, 3, 6, 6, 4, 9, 9, 6, 3, 2, 4, 2, 5, 5, 2, 6, 5, 6, 7, 5, 4, 3, 1, 6, 9, 8, 3, 2, 6, 7, 7, 1, 2, 6, 2, 5, 1, 7, 5, 8, 6, 4, 6, 8, 0, 8, 7, 1, 2, 9, 8, 4, 0, 8, 8, 2, 2, 6, 1, 8, 3, 8, 5, 9, 3, 6, 3, 6, 9, 4, 1, 1, 2, 9, 0, 3, 6, 3, 7, 0, 1, 0, 8, 5, 4, 5, 7, 7, 0, 2
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Programs

Formula

Equals cos(5*Pi/36) = 2F1(17/24,7/24;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals A019861 * A019886 + A019822 * A019847 = A010527 * A019894 + A019814*(1/2). - R. J. Mathar, Jan 27 2021

A019834 Decimal expansion of sine of 25 degrees.

Original entry on oeis.org

4, 2, 2, 6, 1, 8, 2, 6, 1, 7, 4, 0, 6, 9, 9, 4, 3, 6, 1, 8, 6, 9, 7, 8, 4, 8, 9, 6, 4, 7, 7, 3, 0, 1, 8, 1, 5, 6, 3, 1, 2, 9, 3, 0, 1, 1, 9, 4, 8, 6, 4, 6, 2, 3, 4, 4, 4, 4, 1, 5, 1, 5, 9, 2, 1, 0, 6, 5, 9, 8, 4, 9, 9, 8, 5, 6, 8, 9, 9, 8, 9, 6, 1, 4, 4, 6, 4, 3, 7, 3, 6, 1, 9, 4, 3, 1, 5, 8, 8
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals A019829 * A019894 + A019814 * A019879. - R. J. Mathar, Jan 27 2021

A019864 Decimal expansion of sine of 55 degrees.

Original entry on oeis.org

8, 1, 9, 1, 5, 2, 0, 4, 4, 2, 8, 8, 9, 9, 1, 7, 8, 9, 6, 8, 4, 4, 8, 8, 3, 8, 5, 9, 1, 6, 8, 4, 3, 4, 3, 1, 8, 9, 0, 0, 1, 1, 4, 6, 9, 0, 2, 6, 1, 6, 2, 0, 0, 8, 2, 5, 7, 5, 5, 5, 0, 4, 1, 2, 5, 4, 1, 8, 8, 5, 5, 8, 4, 5, 4, 6, 9, 3, 0, 8, 0, 7, 5, 2, 9, 6, 2, 4, 5, 2, 8, 0, 8, 4, 6, 1, 3, 3, 0
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

Equals cos(7*Pi/36) = 2F1(19/24,5/24;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008

A019844 Decimal expansion of sine of 35 degrees.

Original entry on oeis.org

5, 7, 3, 5, 7, 6, 4, 3, 6, 3, 5, 1, 0, 4, 6, 0, 9, 6, 1, 0, 8, 0, 3, 1, 9, 1, 2, 8, 2, 6, 1, 5, 7, 8, 6, 4, 6, 2, 0, 4, 3, 3, 3, 7, 1, 4, 5, 0, 9, 8, 6, 3, 5, 1, 0, 8, 1, 0, 2, 7, 1, 1, 8, 1, 6, 9, 4, 5, 6, 8, 9, 9, 8, 5, 2, 5, 6, 1, 6, 1, 0, 0, 5, 9, 7, 2, 2, 0, 1, 2, 6, 4, 0, 2, 2, 0, 3, 3, 3
Offset: 0

Views

Author

Keywords

Comments

This sequence is also decimal expansion of cosine of 55 degrees. - Mohammad K. Azarian, Jun 29 2013

Programs

  • Mathematica
    RealDigits[Sin[35 Degree],10,120][[1]] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    sin(35*Pi/180) \\ Michel Marcus, Aug 11 2014

Formula

Equals A019837 * A019892 + A019816 * A019871 = (1/2)* A019894 + A019814 * A010527. - R. J. Mathar, Jan 27 2021

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Showing 1-8 of 8 results.