cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A019879 Decimal expansion of sine of 70 degrees.

Original entry on oeis.org

9, 3, 9, 6, 9, 2, 6, 2, 0, 7, 8, 5, 9, 0, 8, 3, 8, 4, 0, 5, 4, 1, 0, 9, 2, 7, 7, 3, 2, 4, 7, 3, 1, 4, 6, 9, 9, 3, 6, 2, 0, 8, 1, 3, 4, 2, 6, 4, 4, 6, 4, 6, 3, 3, 0, 9, 0, 2, 8, 6, 6, 6, 2, 7, 7, 4, 2, 2, 1, 2, 1, 0, 9, 9, 5, 8, 8, 9, 4, 5, 8, 9, 4, 9, 7, 4, 5, 8, 8, 9, 8, 3, 7, 9, 4, 8, 0, 6, 7
Offset: 0

Views

Author

Keywords

Comments

It is well known that the length sin 70° (cos 20°) is not constructible with ruler and compass, since it is a root of the irreducible polynomial 8x^3 - 6x - 1 and 3 fails to divide any power of 2. - Jean-François Alcover, Aug 10 2014 [cf. the Maxfield ref.]
A cubic number with denominator 2. - Charles R Greathouse IV, Aug 27 2017
From Peter Bala, Oct 21 2021: (Start)
The minimal polynomial of cos(Pi/9) is 8*x^3 - 6*x - 1 with discriminant (2^6)*(3^4), a square: hence the Galois group of the algebraic number field Q(sin(70°) over Q is the cyclic group of order 3.
The two other zeros of the minimal polynomial are cos(5*Pi/9) = - A019819 and cos(7*Pi/9) = - A019859. The mapping z -> 1 - 2*z^2 cyclically permutes the three zeros. The inverse permutation is given by the mapping z -> 2*z^2 - z - 1. (End)

Examples

			0.93969262...
		

References

  • J. E. Maxfield and M. W. Maxfield, Abstract Algebra and Solution by Radicals, Dover Publications ISBN 0-486-67121-6, (1992), p. 197.

Crossrefs

Programs

Formula

Equals 2*A019844*A019864. - R. J. Mathar, Jan 17 2021
Equals cos(Pi/9) = (1/2)*A332437. - Peter Bala, Oct 21 2021
Equals 2F1(-1/6,1/6 ; 1/2; 3/4). - R. J. Mathar, Aug 31 2025

A130880 Decimal expansion of 2*sin(Pi/18).

Original entry on oeis.org

3, 4, 7, 2, 9, 6, 3, 5, 5, 3, 3, 3, 8, 6, 0, 6, 9, 7, 7, 0, 3, 4, 3, 3, 2, 5, 3, 5, 3, 8, 6, 2, 9, 5, 9, 2, 0, 0, 0, 7, 5, 1, 3, 5, 4, 3, 6, 8, 1, 3, 8, 7, 7, 4, 4, 7, 2, 4, 8, 2, 7, 5, 6, 2, 6, 4, 1, 3, 1, 6, 4, 4, 2, 7, 8, 0, 2, 9, 4, 7, 0, 8, 4, 3, 0, 3, 3, 2, 2, 6, 3, 1, 4, 7, 9, 9, 1, 4, 8, 0, 2, 3, 9, 1, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2007

Keywords

Comments

Also: a bond percolation threshold probability on the triangular lattice.
Also: the edge length of a regular 18-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272488). - Stanislav Sykora, May 01 2016

Examples

			0.347296355333860697703433253538629592...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.18.1, p. 373.

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/18], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/18)

Formula

Equals 2*A019819 = A019829/A019889.
Algebraic number with minimal polynomial over Q equal to x^3 - 3*x + 1, a cyclic cubic, having zeros 2*sin(Pi/18) (= 2*cos(4*Pi/9)), 2*sin(5*Pi/18) (= 2*cos(2*Pi/9)) and -2*sin(7*Pi/18) (= -2*cos(Pi/9)). Cf. A332437. - Peter Bala, Oct 23 2021
Equals 2 + rho(9) - rho(9)^2, an element of the extension field Q(rho(9)), with rho(9) = 2*cos(Pi/9) = A332437 with minimal polynomial x^3 - 3*x - 1 over Q. - Wolfdieter Lang, Sep 20 2022
Equals -1 + Product_{k>=3} (1 - (-1)^k/A063289(k)). - Amiram Eldar, Nov 22 2024
Equals A133749/2 = 1 - A178959. - Hugo Pfoertner, Dec 15 2024

A019824 Decimal expansion of sine of 15 degrees.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 0, 4, 5, 1, 0, 2, 5, 2, 0, 7, 6, 2, 3, 4, 8, 8, 9, 8, 8, 3, 7, 6, 2, 4, 0, 4, 8, 3, 2, 8, 3, 4, 9, 0, 6, 8, 9, 0, 1, 3, 1, 9, 9, 3, 0, 5, 1, 3, 8, 1, 4, 0, 0, 3, 2, 0, 7, 3, 1, 5, 0, 5, 6, 9, 7, 4, 7, 4, 8, 8, 0, 1, 9, 9, 6, 9, 2, 2, 3, 6, 7, 9, 7, 4, 6, 9, 4, 2, 4, 9, 6, 6, 5
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/6). - Stanislav Sykora, Apr 25 2012

Examples

			0.258819045102520762348898837624048328349068901319930513814003207315...
		

Crossrefs

Programs

Formula

Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - R. J. Mathar, Jun 18 2006
Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - R. J. Mathar, Oct 27 2008
Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - Amiram Eldar, Aug 05 2020
This^2 + A019884^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of 16*x^4-16*x^2+1=0. - R. J. Mathar, Aug 31 2025

A019829 Decimal expansion of sine of 20 degrees.

Original entry on oeis.org

3, 4, 2, 0, 2, 0, 1, 4, 3, 3, 2, 5, 6, 6, 8, 7, 3, 3, 0, 4, 4, 0, 9, 9, 6, 1, 4, 6, 8, 2, 2, 5, 9, 5, 8, 0, 7, 6, 3, 0, 8, 3, 3, 6, 7, 5, 1, 4, 1, 6, 0, 6, 2, 8, 4, 6, 5, 0, 4, 8, 4, 9, 7, 6, 8, 4, 7, 1, 4, 7, 6, 3, 7, 0, 2, 0, 7, 7, 5, 9, 9, 5, 6, 4, 1, 9, 0, 1, 8, 2, 3, 3, 8, 5, 2, 5, 5, 4, 7
Offset: 0

Views

Author

Keywords

Examples

			0.34202014332566873304409961468225958076308336751416062846504849768471476...
		

Crossrefs

Cf. A323601.

Programs

  • Mathematica
    RealDigits[ Sin[Pi/9], 10, 111][[1]]  (* Robert G. Wilson v *)
  • PARI
    /* for x = 20 degrees, sin(9x) = 0 */
    /* so sin(x) is a zero of this polynomial */
    sin_9(x)=9*x-120*x^3+432*x^5-576*x^7+256*x^9
    x=34;y=100;print(3);print(4);
    for(digits=1, 110, {d=0;y=y*10;while(sin_9((10*x+d)/y) > 0, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=10*x+d})
    \\ Michael B. Porter, Jan 27 2010
    
  • PARI
    sin(Pi/9) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals cos(7*Pi/18) = 2F1(13/12,-1/12;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Root of the equation 64*x^6 - 96*x^4 + 36*x^2 - 3 = 0. - Vaclav Kotesovec, Jan 19 2019 (other A019849, A019889)
Equals sqrt(8 - 2^(4/3)*(1 + i*sqrt(3))^(2/3) + i*2^(2/3)*(1 + i*sqrt(3))^(1/3)*(i + sqrt(3)))/4, where i is the imaginary unit. - Vaclav Kotesovec, Jan 19 2019
Equals 2*A019819 *A019889. - R. J. Mathar, Jan 17 2021
This^2 + A019879^2=1. - R. J. Mathar, Aug 31 2025

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025

A019894 Decimal expansion of sine of 85 degrees.

Original entry on oeis.org

9, 9, 6, 1, 9, 4, 6, 9, 8, 0, 9, 1, 7, 4, 5, 5, 3, 2, 2, 9, 5, 0, 1, 0, 4, 0, 2, 4, 7, 3, 8, 8, 8, 0, 4, 6, 1, 8, 3, 5, 6, 2, 6, 7, 2, 6, 4, 5, 8, 5, 0, 9, 7, 4, 5, 2, 5, 4, 4, 2, 2, 7, 7, 3, 8, 0, 1, 1, 6, 7, 4, 9, 8, 3, 8, 2, 5, 1, 5, 9, 9, 6, 7, 4, 1, 8, 6, 3, 8, 6, 2, 5, 9, 6, 5, 1, 9, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[17*Pi/36],10,99][[1]] (* Stefano Spezia, Feb 09 2025 *)

Formula

Equals cos(Pi/36) = 2F1(13/24,11/24;1/2;3/4) / 2 . - R. J. Mathar, Oct 27 2008

A019820 Decimal expansion of sine of 11 degrees.

Original entry on oeis.org

1, 9, 0, 8, 0, 8, 9, 9, 5, 3, 7, 6, 5, 4, 4, 8, 1, 2, 4, 0, 5, 1, 4, 0, 4, 8, 7, 9, 5, 8, 3, 8, 7, 6, 1, 9, 6, 2, 7, 9, 2, 0, 7, 5, 1, 2, 7, 4, 0, 5, 5, 2, 6, 6, 9, 6, 8, 8, 1, 8, 1, 3, 2, 6, 1, 7, 9, 7, 8, 3, 9, 9, 2, 0, 2, 1, 7, 7, 5, 4, 6, 5, 0, 8, 8, 6, 5, 9, 2, 4, 7, 3, 9, 1, 6, 7, 1, 8, 8
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 48 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Crossrefs

Programs

Formula

Equals A019819 * A019898 + A019810 * A019889. - R. J. Mathar, Jan 27 2021

A019908 Decimal expansion of tangent of 10 degrees.

Original entry on oeis.org

1, 7, 6, 3, 2, 6, 9, 8, 0, 7, 0, 8, 4, 6, 4, 9, 7, 3, 4, 7, 1, 0, 9, 0, 3, 8, 6, 8, 6, 8, 6, 1, 8, 9, 8, 6, 1, 2, 1, 6, 3, 3, 0, 6, 2, 3, 4, 8, 0, 9, 8, 6, 6, 0, 2, 0, 5, 3, 6, 3, 9, 8, 3, 8, 3, 5, 4, 4, 6, 9, 0, 8, 9, 1, 7, 7, 5, 8, 6, 2, 5, 4, 9, 8, 6, 5, 1, 3, 3, 5, 0, 8, 0, 3, 2, 4, 4, 5, 3
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 80 degrees. - Mohammad K. Azarian, Jun 30 2013

Examples

			0.176326980708464973471090386868618986121633...
		

Crossrefs

Cf. A019918.

Programs

Formula

A root of 3*x^6 -27*x^4 +33*x^2 -1 =0 (others A019968, A019948). - R. J. Mathar, Aug 29 2025
tan(Pi/18) = A019819/A019889. - R. J. Mathar, Aug 31 2025

A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).

Original entry on oeis.org

1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232737.

Examples

			0.195090322016128267848284868477022240927691617751954807754502...
		

Crossrefs

Cf. A232737 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232736 (imag(I^(1/7))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.

A280633 Decimal expansion of 18*sin(Pi/18).

Original entry on oeis.org

3, 1, 2, 5, 6, 6, 7, 1, 9, 8, 0, 0, 4, 7, 4, 6, 2, 7, 9, 3, 3, 0, 8, 9, 9, 2, 8, 1, 8, 4, 7, 6, 6, 6, 3, 2, 8, 0, 0, 6, 7, 6, 2, 1, 8, 9, 3, 1, 3, 2, 4, 8, 9, 7, 0, 2, 5, 2, 3, 4, 4, 8, 0, 6, 3, 7, 7, 1, 8, 4, 7, 9, 8, 5, 0, 2, 2, 6, 5, 2, 3, 7, 5, 8, 7, 2, 9, 9, 0, 3, 6, 8, 3, 3, 1, 9, 2, 3, 3, 2, 2, 1, 5, 2, 6
Offset: 1

Views

Author

Rick L. Shepherd, Jan 06 2017

Keywords

Comments

The ratio of the perimeter of a regular 9-gon (nonagon) to its diameter (largest diagonal).
Also least positive root of x^3 - 243x + 729.

Examples

			3.125667198004746279330899281847666328006762189313248970252344806377184798...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7),A280585 (n=8), A280725(n=11), A280819 (n=12).

Programs

  • Maple
    evalf(18*sin(Pi/18),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[18*Sin[Pi/18],10,120][[1]] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    18*sin(Pi/18)

Formula

Showing 1-10 of 15 results. Next