cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A021913 Period 4: repeat [0, 0, 1, 1].

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 1/909.
Lexicographically earliest de Bruijn sequence for n = 2 and k = 2.
Except for first term, binary expansion of the decimal number 1/10 = 0.000110011001100110011... in base 2. - Benoit Cloitre, May 18 2002
Content of #2 binary placeholder when n is converted from decimal to binary. a(n) = n*(n-1)/2 mod 2. Example: a(7) = 1 since 7 in binary is 1 -1- 1 and (7*6/2) mod 2 = 1. - Anne M. Donovan (anned3005(AT)aol.com), Sep 15 2003
Expansion in any base b of 1/((b-1)*(b^2+1)) = 1/(b^3-b^2+b-1). E.g., 1/5 in base 2, 1/20 in base 3, 1/51 in base 4, etc. - Franklin T. Adams-Watters, Nov 07 2006
Except for first term, parity of the triangular numbers A000217. - Omar E. Pol, Jan 17 2012
Except for first term, more generally: 1) Parity of the k-polygonal numbers, if k is odd (Cf. A139600, A139601). 2) Parity of the generalized k-gonal numbers, for even k >= 6. - Omar E. Pol, Feb 05 2012
Except for first term, parity of Recamán's sequence A005132. - Omar E. Pol, Apr 13 2012
Inverse binomial transform of A000749(n+1). - Wesley Ivan Hurt, Dec 30 2015
Least significant bit of tribonacci numbers (A000073). - Andres Cicuttin, Apr 04 2016

Examples

			G.f. = x^2 + x^3 + x^6 + x^7 + x^10 + x^11 + x^14 + x^15 + x^18 + x^19 + ...;
1/909 = 0.001100110011001 ...
		

Crossrefs

Programs

Formula

From Paul Barry, Aug 30 2004: (Start)
G.f.: x^2*(1 + x)/(1 - x^4).
a(n) = 1/2 - cos(Pi*n/2)/2 - sin(Pi*n/2)/2.
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2. (End)
a(n+2) = Sum_{k=0..n} b(k), with b(k) = A056594(k) (partial sums of S(n,x) Chebyshev polynomials at x=0).
a(n) = -a(n-2) + 1, for n >= 2 with a(0) = a(1) = 0.
G.f.: x^2/((1 - x)*(1 + x^2)) = x^2/(1 - x + x^2 - x^3).
From Jaume Oliver Lafont, Dec 05 2008: (Start)
a(n) = 1/2 - sin((2n+1)*Pi/4)/sqrt(2).
a(n) = 1/2 - cos((2n-1)*Pi/4)/sqrt(2). (End)
a(n) = floor((n mod 4)/2). - Reinhard Zumkeller, Apr 15 2011
Euler transform of length 4 sequence [1, -1, 0, 1]. - Michael Somos, Feb 28 2014
a(1-n) = a(n) for all n in Z. - Michael Somos, Feb 28 2014
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-4) for n > 3.
a(n) = A133872(n+2).
a(n) + a(n+1) = A007877(n). (End)
E.g.f.: (exp(x) - sin(x) - cos(x))/2. - Ilya Gutkovskiy, Jul 11 2016
a(n) = (1 - (-1)^(n*(n-1)/2))/2. - Guenther Schrack, Feb 28 2019

Extensions

Chebyshev comment from Wolfdieter Lang, Sep 10 2004