A022087 Fibonacci sequence beginning 0, 4.
0, 4, 4, 8, 12, 20, 32, 52, 84, 136, 220, 356, 576, 932, 1508, 2440, 3948, 6388, 10336, 16724, 27060, 43784, 70844, 114628, 185472, 300100, 485572, 785672, 1271244, 2056916, 3328160, 5385076, 8713236, 14098312, 22811548, 36909860, 59721408, 96631268
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 18.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[4*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Oct 12 2013
-
Maple
a:= n-> (Matrix([[4,0]]). Matrix([[1,1],[1,0]])^n)[1,2]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 17 2008
-
Mathematica
4*Fibonacci[Range[0,50]] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *) Table[4 Fibonacci(n), {n, 0, 40}] (* Bruno Berselli, May 22 2015 *) LinearRecurrence[{1,1},{0,4},40] (* Harvey P. Dale, Jul 31 2025 *)
-
PARI
a(n)=4*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
-
SageMath
def A022087(n): return 4*fibonacci(n) print([A022087(n) for n in range(41)]) # G. C. Greubel, Apr 12 2025
Formula
a(n) = 4*F(n) = F(n-2) + F(n) + F(n+2), where F = A000045.
a(n) = round( phi^n*(8*phi-4)/5 ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+2,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 4*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = F(n+9) - 17*F(n+3), where F=A000045. - Manuel Valdivia, Dec 15 2009
G.f.: Q(0) -1, where Q(k) = 1 + x^2 + (4*k+5)*x - x*(4*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n) = Fibonacci(n+3) - Fibonacci(n-3), where Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015
Comments