cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A008486 Expansion of (1 + x + x^2)/(1 - x)^2.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/3); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Coordination sequence for planar net 6^3 (the graphite net, or the graphene crystal) - that is, the number of atoms at graph distance n from any fixed atom. Also for the hcb or honeycomb net. - N. J. A. Sloane, Jan 06 2013, Mar 31 2018
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_3].
Conjecture: This is also the maximum number of edges possible in a planar simple graph with n+2 vertices. - Dmitry Kamenetsky, Jun 29 2008
The conjecture is correct. Proof: For n=0 the theorem holds, the maximum planar graph has n+2=2 vertices and 1 edge. Now suppose that we have a connected planar graph with at least 3 vertices. If it contains a face that is not a triangle, we can add an edge that divides this face into two without breaking its planarity. Hence all maximum planar graphs are triangulations. Euler's formula for planar graphs states that in any planar simple graph with V vertices, E edges and F faces we have V+F-E=2. If all faces are triangles, then F=2E/3, which gives us E=3V-6. Hence for n>0 each maximum planar simple graph with n+2 vertices has 3n edges. - Michal Forisek, Apr 23 2009
a(n) = sum of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see e.g. A008486). - Jaroslav Krizek, Nov 18 2009
a(n) = partial sums of A158799(n). Partial sums of a(n) = A005448(n). - Jaroslav Krizek, Dec 06 2009
Integers n dividing a(n) = a(n-1) - a(n-2) with initial conditions a(0)=0, a(1)=1 (see A128834 with offset 0). - Thomas M. Bridge, Nov 03 2013
a(n) is conjectured to be the number of polygons added after n iterations of the polygon expansions (type A, B, C, D & E) shown in the Ngaokrajang link. The patterns are supposed to become the planar Archimedean net 3.3.3.3.3.3, 3.6.3.6, 3.12.12, 3.3.3.3.6 and 4.6.12 respectively when n - > infinity. - Kival Ngaokrajang, Dec 28 2014
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I. - Ray Chandler, Nov 21 2016
Conjecture: let m = n + 2, p is the polyhedron formed by the convex hull of m points, q is the number of quadrilateral faces of p (see the Wikipedia link below), and f(m) = a(n) - q. Then f(m) would be the solution of the Thompson problem for all m in 3-space. - Sergey Pavlov, Feb 03 2017
Also, sequence defined by a(0)=1, a(1)=3, c(0)=2, c(1)=4; and thereafter a(n) = c(n-1) + c(n-2), and c consists of the numbers missing from a (see A001651). - Ivan Neretin, Mar 28 2017

Examples

			G.f. = 1 + 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + 24*x^8 + ...
From _Omar E. Pol_, Aug 20 2011: (Start)
Illustration of initial terms as triangles:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
(End)
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.

Crossrefs

Partial sums give A005448.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Haskell
    a008486 0 = 1; a008486 n = 3 * n
    a008486_list = 1 : [3, 6 ..]  -- Reinhard Zumkeller, Apr 17 2015
  • Magma
    [0^n+3*n: n in [0..90] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) / (1 - x)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Nov 23 2014 *)
    a[ n_] := If[ n == 0, 1, 3 n]; (* Michael Somos, Apr 17 2015 *)
  • PARI
    {a(n) = if( n==0, 1, 3 * n)}; /* Michael Somos, May 05 2015 */
    

Formula

a(0) = 1; a(n) = 3*n = A008585(n), n >= 1.
Euler transform of length 3 sequence [3, 0, -1]. - Michael Somos, Aug 04 2009
a(n) = a(n-1) + 3 for n >= 2. - Jaroslav Krizek, Nov 18 2009
a(n) = 0^n + 3*n. - Vincenzo Librandi, Aug 21 2011
a(n) = -a(-n) unless n = 0. - Michael Somos, May 05 2015
E.g.f.: 1 + 3*exp(x)*x. - Stefano Spezia, Aug 07 2022

A022441 a(n) = c(n) + c(n-1) where c (A055562) is the sequence of numbers not in a.

Original entry on oeis.org

1, 5, 7, 10, 14, 17, 20, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A055562 (complement), A022424.

Programs

  • Magma
    [1] cat [3*n + 2 - (Floor((Log(n)/Log(2))) mod 2): n in [0..10]]; // G. C. Greubel, Mar 08 2018
  • Maple
    A022441 := n-> `if`(n=0, 1, 3*n + 2 - (ilog2(n) mod 2)):
    seq(A022441(n), n= 0..59);
  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2 + 1, #2 + 2}]]] &, {1, 5}, Range[58]] (* Ivan Neretin, Mar 30 2017 *)
    Table[If[n==0,1, 3*n+2 - Mod[Floor[Log[n]/Log[2]], 2]], {n,0,30}] (* G. C. Greubel, Mar 08 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0,1, 3*n+2 - (floor(log(n)/log(2))%2)), ", ")) \\ G. C. Greubel, Mar 08 2018
    

Formula

a(n) + a(n-1) = 3n + 2 - (floor(log_2 n) mod 2) for n >= 1. - Jeffrey Shallit, Jun 08 2000
For n>0, a(n) = b(n) with b(0)=0, b(2n) = -b(n)+9n+3, b(2n+1) = -b(n)+9n+6-[n==0]. - Ralf Stephan, Oct 24 2003
a(n) = A210770(2*n+1). - Reinhard Zumkeller, Mar 25 2012

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 23 2000
Term a(16)=50 fixed by Ivan Neretin, Mar 30 2017
Updated by Clark Kimberling, Feb 19 2018

A299407 Solution b( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 4; see Comments.

Original entry on oeis.org

2, 3, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 90, 91, 93, 94, 96, 97, 99, 100
Offset: 0

Views

Author

Clark Kimberling, Feb 14 2018

Keywords

Comments

a(n) = b(n-1) + b(n-2) for n > 2;
b(0) = least positive integer not in {a(0),a(1)};
b(n) = least positive integer not in {a(0),...,a(n),b(0),...b(n-1)} for n > 1.
Note that (b(n)) is strictly increasing and is the complement of (a(n)).
See A022424 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
    a[n_] := a[n] = b[n - 1] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 100}]  (* A022425 *)
    Table[b[n], {n, 0, 100}]  (* A299407 *)

A022425 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 4; see Comments.

Original entry on oeis.org

1, 4, 5, 9, 13, 15, 18, 21, 23, 26, 30, 33, 36, 39, 42, 46, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 89, 92, 95, 98, 101, 104, 107, 110, 114, 117, 120, 123, 126, 129, 132, 135
Offset: 0

Views

Author

Keywords

Comments

a(n) = b(n-1) + b(n-2) for n > 2;
b(0) = least positive integer not in {a(0),a(1)};
b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1.
Note that (b(n)) is strictly increasing and is the complement of (a(n)).
See A022424 for a guide to related sequences.

Crossrefs

Cf. A022424, A299407 (complement).

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 1}]]] &, {1, 4}, Range[44]] (* Ivan Neretin, Mar 28 2017 *)

Extensions

Updated by Clark Kimberling, Feb 19 2018

A022426 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 2, a(1) = 3; see Comments.

Original entry on oeis.org

2, 3, 5, 10, 13, 15, 17, 20, 23, 26, 30, 34, 37, 40, 43, 46, 49, 52, 55, 57, 60, 63, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 114, 117, 120, 123, 126, 130, 133, 136
Offset: 0

Views

Author

Keywords

Comments

Following the Bode-Harborth-Kimberling link:
a(n) = b(n-1) + b(n-2) for n > 2;
b(0) = least positive integer not in {a(0),a(1)};
b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1.
Note that (b(n)) is strictly increasing and is the complement of (a(n)).
See A022424 for a guide to related sequences.

Crossrefs

Cf. A022424, A299411 (complement).

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 1}]]] &, {2, 3}, Range[44]] (* Ivan Neretin, Mar 28 2017 *)

A022427 a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.

Original entry on oeis.org

1, 2, 3, 10, 12, 14, 16, 19, 22, 26, 30, 33, 37, 39, 43, 45, 48, 51, 53, 56, 59, 61, 65, 67, 70, 73, 76, 79, 82, 85, 88, 91, 95, 97, 101, 104, 107, 111, 113, 117, 120, 123, 126, 129, 132, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A022424 and references therein.
Cf. A299536.

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 2}]]] &, {1, 2, 3}, Range[55]] (* Ivan Neretin, Mar 28 2017 *)

A022437 a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.

Original entry on oeis.org

2, 3, 4, 7, 13, 15, 18, 20, 22, 25, 28, 31, 35, 38, 42, 45, 49, 51, 55, 57, 61, 63, 66, 69, 71, 75, 77, 80, 83, 85, 89, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 131, 133
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A022424 and references therein.

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 2}]]] &, {2, 3, 4}, Range[43]] (* Ivan Neretin, Mar 30 2017 *)

A022438 a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.

Original entry on oeis.org

2, 3, 5, 7, 12, 15, 18, 20, 23, 25, 29, 31, 35, 38, 41, 45, 48, 51, 54, 57, 60, 63, 66, 69, 71, 75, 77, 81, 83, 86, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 171, 173
Offset: 0

Views

Author

Keywords

Comments

From Clark Kimberling, Feb 25 2018: (Start)
Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-3), where a(0) = 2, a(1) = 3, a(2) = 5.
From the Bode-Harborth-Kimberling link:
a(n) = b(n-1) + b(n-3) for n > 3;
b(0) = least positive integer not in {a(0),a(1),a(2)};
b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1.
Note that (b(n)) is strictly increasing and is the complement of (a(n)).
See A022424 for a guide to related sequences.
(End)

Crossrefs

Cf. A022424 and references therein. Cf. A299540.

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 2}]]] &, {2, 3, 5}, Range[43]] (* Ivan Neretin, Mar 30 2017 *)
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 2; a[1] = 3; a[2] = 5; b[0] = 1; b[1] = 4;
    a[n_] := a[n] = b[n - 1] + b[n - 3];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 100}]    (* A022438 *)
    Table[b[n], {n, 0, 100}]    (* A299540 *)
    (* Clark Kimberling, Feb 25 2018 *)

A022442 a(n) = c(n) + c(n-1) where c is the sequence of numbers not in a.

Original entry on oeis.org

2, 4, 8, 11, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41, 44, 47, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A099467 (complement).
Cf. A022424 and references therein.

Programs

  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2 + 1, #2 + 2}]]] &, {2, 4}, Range[44]] (* Ivan Neretin, Mar 30 2017 *)

Formula

For n>0, a(n)=b(n) with b(0)=0, b(2n) = -b(n)+9n+3, b(2n+1) = -b(n)+9n+6-2[n==0]. - Ralf Stephan, Oct 23 2003

A055563 a(n) = least number greater than a(n-1) not the sum of an earlier pair of consecutive terms, a(0) = 3.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105
Offset: 0

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(3) = 6 because a(2) = 5, 6 <> a(0) + a(1) and 6 <> a(1) + a(2);
a(4) = 8 because a(3) = 6, 7 = a(0) + a(1), 8 <> a(0) + a(1), 8 <> a(1) + a(2) and 8 <> a(2) + a(3).
		

Crossrefs

Complement of A022424. See A001651 for a(0) = 1 and A055562 for a(0) = 2.

Formula

a(n) = A022424(n) - a(n-1) for n > 0.
Showing 1-10 of 57 results. Next