cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A022545 Initial members of prime nonuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30).

Original entry on oeis.org

11, 182403491, 226449521, 910935911, 1042090781, 1459270271, 2843348351, 6394117181, 6765896981, 8247812381, 8750853101, 11076719651, 12850665671, 17140322651, 22784826131, 24816950771, 33081664151
Offset: 1

Views

Author

Keywords

Comments

All terms congruent to 11 (modulo 210). - Matt C. Anderson, May 27 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(250000000) | forall{p+r: r in [2, 6,8,12,18,20,26,30] | IsPrime(p+r)}]; // Vincenzo Librandi, May 27 2015
    
  • Mathematica
    Select[Prime[Range[250000000]], Union[PrimeQ[ # +{2, 6, 8, 12, 18, 20, 26, 30}]]=={True} &] (* Vincenzo Librandi, May 27 2015 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 2,6,8,12,18,20,26,30); # Dana Jacobsen, Sep 30 2015
    

Extensions

More terms from Matt C. Anderson

A022547 Initial members of prime nonuplets (p, p+4, p+6, p+10, p+16, p+18, p+24, p+28, p+30).

Original entry on oeis.org

13, 113143, 626927443, 2335215973, 3447123283, 4086982633, 4422726013, 6318867403, 7093284043, 8541306853, 10998082213, 14005112893, 18869466373, 21528117883, 21843411823, 28156779793, 30303283243
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 13 (modulo 30). - Matt C. Anderson, May 28 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [4,6,10,16,18,24,28,30] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015
    
  • Maple
    composite_small := proc (n::integer)
    description "determine if n has a prime factor less than 100";
    if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if;
    end proc:
    # A prime constellation pattern of length 9
    p := [0, 4, 6, 10, 16, 18, 24, 28, 30];
    # using isprime(m*n+o+p)
    o := [1273, 2263, 2683, 4003, 4633, 4993, 5893, 6883, 6943, 8623, 9613, 10243, 11563, 12823, 14863, 15133, 15553, 17863, 18433, 19753, 21163, 21793, 22483, 23053, 23113, 24103, 25783, 27733, 28723, 29983]:
    with(ArrayTools):
    os := Size(o, 2):
    m := 30030:
    loopstop := 10^11:
    loopstart := 0:
    print(13);
    for n from loopstart to loopstop do
    for a from 1 to os do
    counter := 0; wc := 0; wd := 0;
    while `and`(wd > -10, wd < 9) do
    wd := wd+1;
    if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if
    end do;
    if wd >= 9 then
    while `and`(counter >= 0, wc < 9) do
    wc := wc+1; if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if;
    end do;
    end if;
    if counter = 9 then print(m*n+o[a]) end if;
    end do:
    end do:
    # Matt C. Anderson, Feb 01 2014
  • Mathematica
    Select[Prime[Range[200000]], Union[PrimeQ[# + {4, 6, 10, 16, 18, 24, 28, 30}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+4) && isprime(p+6) && isprime(p+10) && isprime(p+16) && isprime(p+18) && isprime(p+24) && isprime(p+28) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 4,6,10,16,18,24,28,30); # Dana Jacobsen, Sep 30 2015
    

A022548 Initial members of prime nonuplets (p, p+4, p+10, p+12, p+18, p+22, p+24, p+28, p+30).

Original entry on oeis.org

88789, 855709, 74266249, 964669609, 1422475909, 2117861719, 2558211559, 2873599429, 5766036949, 6568530949, 8076004609, 9853497739, 16394542249, 21171795079, 21956291869, 22741837819, 26486447149, 27254489389
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 169 (modulo 210). - Matt C. Anderson, May 28 2015

Crossrefs

Programs

  • Maple
    a := 1; for b to 25 do a := a*ithprime(b) end do; a;
    # so ‘a’ is the product of the primes 2 through 97
    composite_small := proc (n::integer)
    description "determine if n has a prime factor less than 100";
    if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if
    end proc;
    # my technique involves isprime(m*n+o+p)
    # with Multiplier, Number, Offset, and Pattern
    p := [0, 4, 10, 12, 18, 22, 24, 28, 30];
    o := [2059, 6679, 7519, 8989, 10249, 12139, 14449, 14869, 15919, 17179, 20539, 21379, 24109, 25999, 28729];
    with(ArrayTools);
    os := Size(o, 2);
    ps := Size(p, 2);
    m := 30030;
    loopstop := 10^11;
    loopstart := 0;
    for n from loopstart to loopstop do
    for a to os do
    counter := 0; wc := 0; wd := 0;
    while `and`(wd > -10, wd < ps) do
    wd := wd+1;
    if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if;
    end do;
    if wd >= 9 then
    while `and`(counter >= 0, wc < ps) do
    wc := wc+1;
    if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if;
    end do;
    end if;
    if counter = ps then print(m*n+o[a]) end if;
    end do;
    end do;
    # Matt C. Anderson, Feb 13 2014
  • Mathematica
    Select[Prime[Range[2 10^6]], Union[PrimeQ[# + {4, 10, 12, 18, 22, 24, 28, 30}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+4) && isprime(p+10) && isprime(p+12) && isprime(p+18) && isprime(p+22) && isprime(p+24) && isprime(p+28) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 4,10,12,18,22,24,28,30); # Dana Jacobsen, Sep 30 2015
    

A257124 Initial members of prime septuplets.

Original entry on oeis.org

11, 5639, 88799, 165701, 284729, 626609, 855719, 1068701, 1146779, 6560999, 7540439, 8573429, 11900501, 15760091, 17843459, 18504371, 19089599, 21036131, 24001709, 25658441, 39431921, 42981929, 43534019, 45002591, 67816361, 69156539, 74266259, 79208399, 80427029, 84104549, 86818211, 87988709, 93625991, 124066079
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: this sequence out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Cf. A343637 (distance from 10^n to the next septuplet).
Cf. A100418.

Formula

Disjoint union of A022009 and A022010. - M. F. Hasler, Aug 04 2021

A213645 Initial members of prime 12-tuplets. Primes p such that p + (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42) are all prime.

Original entry on oeis.org

11, 380284918609481, 437163765888581, 701889794782061, 980125031081081, 1277156391416021, 1487854607298791, 1833994713165731, 2115067287743141, 2325810733931801, 3056805353932061, 3252606350489381, 3360877662097841, 3501482688249431, 3595802556731501
Offset: 1

Views

Author

Matt C. Anderson, Jun 17 2012

Keywords

Comments

All terms, except the first one, are congruent to 1271 (modulo 2310). - Matt C. Anderson, May 29 2015

Crossrefs

Cf. A022545, A022546, A022547, and A022548 (prime 9-tuplets).
Cf. A135311, 2*A101448 (both begin with 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42).

Programs

  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1, 10**15, 2,6,8,12,18,20,26,30,32,36,42); # Dana Jacobsen, Oct 04 2015

Extensions

Corrected and extended by Dana Jacobsen, Oct 04 2015

A257125 Initial members of prime 9-tuplets (or nonuplets).

Original entry on oeis.org

7, 11, 13, 17, 1277, 88789, 113143, 113147, 855709, 74266249, 182403491, 226449521, 252277007, 408936947, 521481197, 626927443, 910935911, 964669609, 1042090781, 1116452627, 1209950867, 1422475909, 1459270271, 1645175087, 2117861719, 2335215973, 2558211559, 2843348351, 2873599429, 2966003057, 3447123283, 3947480417
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Comments

Primes prime(m) such that prime(m+8) = prime(m) + 30. - Zak Seidov, Jul 06 2015

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: this sequence out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.

Programs

  • Magma
    [NthPrime(n): n in [0..2*10^4] | NthPrime(n+8) eq (NthPrime(n) + 30)]; // Vincenzo Librandi, Jul 08 2015
  • Mathematica
    {p, q, r, s, t, u, v, w, x} = Prime@ Range@ 9; lst = {}; While[p < 1000000001, If[p + 30 == x, AppendTo[lst, p]; Print@ p]; {p, q, r, s, t, u, v, w, x} = {q, r, s, t, u, v, w, x, NextPrime@ x}]; lst (* Robert G. Wilson v, Jul 06 2015 *)
    Select[Partition[Prime[Range[5 10^6]],9,1],#[[1]]+30==#[[9]]&][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 01 2024 *)
  • PARI
    main(size)=v=vector(size); i=0; m=1; while(iAnders Hellström, Jul 08 2015
    

A257127 Initial members of prime 10-tuplets (or decaplets).

Original entry on oeis.org

11, 9853497737, 21956291867, 22741837817, 33081664151, 83122625471, 164444511587, 179590045487, 217999764107, 231255798857, 242360943257, 294920291201, 573459229151, 663903555851, 666413245007, 688697679401, 696391309697, 730121110331, 867132039857, 974275568237, 976136848847, 1002263588297
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime quintuplets: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: this sequence out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.

A257129 Initial members of prime 11-tuples.

Original entry on oeis.org

11, 1418575498573, 2118274828903, 4396774576273, 6368171154193, 6953798916913, 7908189600581, 10527733922591, 12640876669691, 27899359258003, 28138953913303, 34460918582323, 38545620633251, 40362095929003, 42023308245613, 43564522846961, 44058461657443, 60268613366231, 60596839933361, 61062361183903, 71431649320301
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Comments

It appears that this lists only starting primes for one of the A083409(11) = 2 constellations with minimal diameter A008407(11) = 36, i.e., the union of A213646 and A213647, while there are other prime 11-tuples with larger diameter. - M. F. Hasler, Dec 03 2018

Crossrefs

Initial members of all of the first prime k-tuples:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruples: A007530.
prime quintuples: A086140 out of A022007, A022006.
prime sextuples: A022008.
prime septuples: A257124 out of A022009, A022010.
prime octuples: A065706 out of A022011, A022012, A022013.
prime nonuples: A257125 out of A022547, A022548, A022545, A022546.
prime 10-tuples: A257127 out of A027569, A027570.
prime 11-tuples: this sequence out of A213646, A213647.
prime 12-tuples: A257131 out of A213601, A213645.
prime 13-tuples: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuples: A257166 out of A257167, A257168.
prime 15-tuples: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuples: A257308 out of A257369, A257370.
prime 17-tuples: A257373 out of A257374, A257375, A257376, A257377.

A257131 Initial members of prime 12-tuplets.

Original entry on oeis.org

11, 1418575498567, 27899359257997, 34460918582317, 76075560855367, 186460616596327, 218021188549237, 234280497145537, 282854319391717, 345120905374087, 346117552180627, 380284918609481, 437163765888581, 604439135284057, 701889794782061, 727417501795057, 980125031081081, 1041814617748747, 1090754719898917, 1277156391416021, 1487854607298791
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: this sequence out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.

A257135 Initial members of prime 13-tuplets.

Original entry on oeis.org

11, 13, 10527733922579, 186460616596321, 1707898733581273, 3266590043460823, 4289907938811613, 4422879865247923, 5693002600430263, 7582919852522851, 7697168877290909, 7933248530182091, 10071192314217869, 10907318641689703, 11987120084474369, 15991086371740199, 20475715985020181, 21817283854511261, 21817283854511263, 22443709342850669, 28561589689237439, 31979851757518501
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: this sequence out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Showing 1-10 of 32 results. Next