A023200 Primes p such that p + 4 is also prime.
3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429, 1447, 1483
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- H. J. Weber, A Sieve for Cousin Primes, arXiv:1204.3795v1 [math.NT], 2012.
- Eric Weisstein's World of Mathematics, Cousin Primes
- Eric Weisstein's World of Mathematics, Twin Primes
- Wikipedia, Cousin prime.
- Index entries for primes, gaps between
Crossrefs
Programs
-
Haskell
a023200 n = a023200_list !! (n-1) a023200_list = filter ((== 1) . a010051') $ map (subtract 4) $ drop 2 a000040_list -- Reinhard Zumkeller, Aug 01 2014
-
Magma
[p: p in PrimesUpTo(1500) | NextPrime(p)-p eq 4]; // Bruno Berselli, Apr 09 2013
-
Maple
A023200 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+4) do p := nextprime(p) ; end do: p ; end if; end proc: # R. J. Mathar, Sep 03 2011
-
Mathematica
Select[Range[10^2], PrimeQ[#] && PrimeQ[# + 4] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) Select[Prime[Range[250]],PrimeQ[#+4]&] (* Harvey P. Dale, Oct 09 2023 *)
-
PARI
print1(3);p=7;forprime(q=11,1e3,if(q-p==4,print1(", "p)); p=q) \\ Charles R Greathouse IV, Mar 20 2013
Formula
a(n) >> n log^2 n via the Selberg sieve. - Charles R Greathouse IV, Nov 20 2016
Extensions
Definition modified by Vincenzo Librandi, Aug 02 2009
Definition revised by N. J. A. Sloane, Mar 05 2010
Comments