cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A023206 Numbers m such that m and 2*m + 7 both prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 41, 47, 53, 71, 83, 113, 131, 137, 173, 191, 197, 227, 251, 257, 281, 293, 317, 347, 383, 401, 461, 467, 503, 521, 587, 593, 641, 647, 677, 683, 701, 743, 773, 797, 857, 863, 941, 947, 953, 971, 983, 1031, 1061, 1103, 1151, 1163, 1187, 1193, 1217
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A105760. Except for the first two terms, all terms are congruent to 5 mod 6. - John Cerkan, Sep 07 2016

Crossrefs

Programs

A023207 Numbers m such that m and 2*m + 9 both prime.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 31, 37, 47, 59, 61, 71, 79, 101, 107, 109, 127, 131, 137, 149, 151, 179, 211, 227, 229, 239, 241, 257, 269, 277, 281, 311, 317, 337, 359, 367, 389, 401, 409, 439, 449, 479, 487, 491, 521, 541, 547, 557, 571, 577, 607, 641, 647, 659, 709, 719, 739
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A023243 Primes that remain prime through 2 iterations of the function f(x) = 2x + 5.

Original entry on oeis.org

7, 13, 31, 37, 67, 73, 79, 139, 151, 181, 367, 541, 613, 661, 709, 739, 787, 811, 829, 997, 1087, 1117, 1123, 1249, 1327, 1669, 1753, 1801, 1861, 1999, 2011, 2113, 2179, 2239, 2293, 2473, 2557, 2659, 2713, 2719, 3037, 3181, 3187, 3271, 3301, 3517, 3727, 3793
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5 and 4*p+15 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205 and A089038.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15)] // Vincenzo Librandi, Aug 04 2010
    
  • PARI
    is(n)=n%6==1 && isprime(2*n+5) && isprime(4*n+15) && isprime(n) \\ Charles R Greathouse IV, Sep 12 2016

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 12 2016

A023274 Primes that remain prime through 3 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 31, 37, 67, 73, 181, 367, 541, 661, 997, 1087, 1117, 1327, 1861, 2179, 2293, 2473, 2713, 2719, 3271, 3727, 4363, 5281, 5443, 5749, 7459, 8089, 8707, 9109, 9181, 9337, 10357, 10639, 12553, 13183, 14923, 16183, 16249, 17341, 17419, 17761, 17923, 17989
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15 and 8*p+35 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, and of A089038.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35)] // Vincenzo Librandi, Aug 04 2010
  • Maple
    select(t -> isprime(t) and isprime(2*t+5) and isprime(4*t+15) and isprime(8*t+35), [seq(t,t=7..20000,6)]);# Robert Israel, Sep 18 2016
  • Mathematica
    Select[Prime@ Range@ 2100, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 5 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 16 2016 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 16 2016

A023304 Primes that remain prime through 4 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 31, 181, 541, 661, 1087, 1861, 2179, 2719, 3727, 7459, 8089, 8707, 9109, 10639, 17341, 19333, 22501, 23293, 29287, 32797, 39847, 40387, 42703, 46591, 51613, 53101, 56149, 56809, 57829, 59233, 80779, 87643, 89113, 89413, 91291, 93979, 94261, 98899
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15, 8*p+35 and 16*p+75 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, A023274, and A089038.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35) and IsPrime(16*n+75)]; // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime@ Range[10^4], Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 5 &, #, 4] > 0 &] (* Michael De Vlieger, Sep 27 2016 *)
    Select[Prime[Range[10000]],AllTrue[Rest[NestList[2#+5&,#,4]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 23 2020 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 27 2016

Extensions

Definition clarified by Harvey P. Dale, Oct 23 2020

A023332 Primes that remain prime through 5 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 541, 1087, 1861, 3727, 23293, 40387, 87643, 98899, 109111, 115153, 116329, 119101, 131617, 133597, 163909, 197521, 214021, 215389, 218227, 238207, 263239, 294751, 489901, 493693, 665527, 734131, 767881, 808693, 895351, 1038127, 1051957
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15, 8*p+35, 16*p+75 and 32*p+155 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, A023274, A023304, and A089038.

Programs

  • Magma
    [n: n in [1..5000000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35) and IsPrime(16*n+75) and IsPrime(32*n+155)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    txQ[p_]:=AllTrue[NestList[2#+5&,p,5],PrimeQ]; Select[Prime[Range[83000]],txQ] (* Harvey P. Dale, May 10 2024 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Oct 09 2016

A290839 a(n) = smallest prime p such that 2p + 2n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
Offset: 0

Views

Author

XU Pingya, Aug 12 2017

Keywords

Crossrefs

Cf. A067076 (indices n at which a(n) = 2).

Programs

  • Mathematica
    Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 12 2017

Formula

a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A153145 Primes p such that 2*p + 19 is also prime.

Original entry on oeis.org

2, 5, 11, 17, 41, 47, 59, 89, 107, 131, 137, 149, 167, 191, 251, 269, 311, 317, 389, 401, 419, 431, 461, 467, 479, 521, 587, 599, 641, 677, 797, 809, 839, 857, 929, 941, 947, 977, 1031, 1061, 1097, 1109, 1181, 1187, 1229, 1301, 1307, 1319, 1361, 1367, 1409
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Examples

			For n=2, 2*n+19 = 23 is prime, so 2 is in the sequence.
		

Crossrefs

Cf. A153143 (m and 2*m+19 are both prime), A005384 (Sophie Germain primes, m and 2*m+1 are both prime), A023204 (m and 2*m+3 are both prime), A023205 (m and 2*m+5 are both prime), A023206 (m and 2*m+7 are both prime), A023207 (m and 2*m+9 are both prime).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(2*p+19)];
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[2 # + 19] &] (* Vincenzo Librandi, Oct 20 2012 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008
Showing 1-8 of 8 results.