cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102338 Numbers k such that 10k+3 is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 26, 28, 29, 31, 35, 37, 38, 43, 44, 46, 50, 52, 56, 59, 61, 64, 65, 67, 68, 73, 74, 77, 82, 85, 86, 88, 95, 98, 101, 103, 106, 109, 110, 112, 115, 116, 119, 121, 122, 128, 130, 137, 142, 143, 145, 148, 149, 152, 154, 155
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Examples

			For n=1, 10k+3 = 13 (prime).
For n=26, 10k+3 = 263 (prime).
For n=50, 10k+3 = 503 (prime).
		

Crossrefs

Cf. A023238 (subsequence of primes), A030431, A049508.

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(10*n+3)]; // Vincenzo Librandi, Apr 06 2011
    
  • Mathematica
    Select[Range[0, 160], PrimeQ[10# + 3] &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    isok(n) = isprime(10*n+3); \\ Michel Marcus, Sep 08 2016

Extensions

Edited and extended by Ray Chandler, Nov 07 2006

A055782 Primes q of the form q = 10p + 3, where p is also prime.

Original entry on oeis.org

23, 53, 73, 113, 173, 193, 233, 293, 313, 373, 433, 593, 613, 673, 733, 1013, 1033, 1093, 1373, 1493, 1733, 1913, 1933, 1973, 1993, 2113, 2273, 2293, 2333, 2393, 2633, 2693, 2713, 2833, 3313, 3373, 3533, 3593, 3673, 3733, 3793, 3833, 4013, 4093, 4493
Offset: 1

Views

Author

Labos Elemer, Jul 13 2000

Keywords

Comments

These primes correspond to resulting primes for A232210, when A232210(n)=1. - Vladimir Shevelev, Oct 16 2014

Examples

			5413 = 541*10 + 3, 3 appended to 541.
		

Crossrefs

Cf. A005384, A005385, A023238. Apart from first term, same as A057667.

Programs

  • Mathematica
    Select[Prime@ Range@ 630, PrimeQ[(# - 3)/10] &] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(q=10*p+3), print1(q, ", ")););} \\ Michel Marcus, Oct 20 2014

Formula

a(n) = 10*A023238(n) + 3. - R. J. Mathar, Sep 21 2009

A023239 Primes p such that 10*p + 7 is also prime.

Original entry on oeis.org

3, 13, 19, 31, 61, 67, 79, 97, 109, 127, 163, 199, 223, 229, 241, 277, 283, 313, 367, 379, 421, 433, 439, 463, 487, 523, 541, 547, 571, 619, 631, 673, 691, 751, 757, 787, 811, 823, 829, 853, 859, 883, 937, 967, 1033, 1093, 1117, 1171, 1237, 1249, 1291, 1303, 1321
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A023238.
Subsequence of A102342.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(10*n+7)] // Vincenzo Librandi, Nov 20 2010
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[10# + 7] &] (* Alonso del Arte, Jun 24 2014 *)

Formula

a(n) == 1 (mod 6), for n > 1. - John Cerkan, Sep 12 2016

A066065 a(n) = smallest prime q such that in decimal notation the concatenation prime(n)q yields a prime ( = A066064(n)).

Original entry on oeis.org

3, 7, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 11, 3, 23, 23, 3, 3, 3, 29, 3, 7, 11, 23, 7, 3, 3, 11, 3, 11, 7, 47, 3, 13, 3, 31, 31, 7, 29, 3, 11, 19, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 7, 11, 17, 3, 3, 3, 7, 11, 3, 11, 13, 23, 7, 23, 3, 3, 29, 13, 3, 3, 3, 3, 3, 3, 17, 19, 3, 3, 11, 7, 17, 7, 7, 71, 3, 37, 41
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 01 2001

Keywords

Comments

Conjecture: a(k) < prime(k) for k > 2.
a(n)=3 if and only if prime(n) is in A023238. - Robert Israel, Dec 27 2017

Examples

			A000040(13) = 41; for the first four primes 2, 3, 5 and 7 we get 412, 413, 415 and 417, which are all composite, but with the 5th prime we have 4111 = A066064(13), so a(13) = 11.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    P:= Vector(N,ithprime):
    A:= Vector(N):
    q:= 2:
    Agenda:= {$1..N}:
    while Agenda <> {} do
      q:= nextprime(q);
      m:= 10^(ilog10(q)+1);
      L,Agenda:= selectremove(t -> isprime(P[t]*m+q), Agenda);
      A[convert(L,list)]:= q;
    od:
    convert(A,list); # Robert Israel, Dec 27 2017
  • PARI
    a(n) = { my(p=prime(n)); forprime(q=3, oo, if(isprime(p*10^(logint(q,10)+1) + q), return(q))) } \\ Harry J. Smith, Nov 09 2009

A023269 Primes that remain prime through 2 iterations of function f(x) = 10x + 3.

Original entry on oeis.org

2, 7, 17, 19, 23, 37, 61, 67, 73, 101, 103, 173, 193, 233, 359, 383, 409, 479, 541, 557, 607, 613, 719, 809, 857, 997, 1013, 1033, 1109, 1117, 1237, 1297, 1361, 1459, 1531, 1549, 1699, 1823, 1871, 1979, 1999, 2069, 2131, 2161, 2347, 2377, 2399, 2447, 2663
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 10*p+3 and 100*p+33 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023238 and of A102338.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(10*n+3) and IsPrime(100*n+33)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime@ Range@ 400, Times @@ Boole@ PrimeQ@ Rest@ NestList[10 # + 3 &, #, 2] > 0 &] (* Michael De Vlieger, Sep 16 2016 *)
    Select[Prime[Range[500]],AllTrue[Rest[NestList[10#+3&,#,2]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 03 2018 *)

A105961 Primes p such that 20*p + 3 is prime.

Original entry on oeis.org

2, 5, 11, 13, 19, 23, 37, 41, 43, 53, 61, 71, 79, 83, 89, 103, 107, 127, 151, 167, 173, 179, 181, 191, 193, 197, 223, 229, 233, 239, 251, 281, 307, 313, 317, 349, 379, 421, 431, 433, 439, 443, 467, 487, 523, 569, 571, 587, 593, 607, 613, 617, 641, 653, 659
Offset: 1

Views

Author

Zak Seidov, May 05 2005

Keywords

Crossrefs

Cf. A023238.

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(20*p+3)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[120]], PrimeQ[20#+3]&]
Showing 1-6 of 6 results.