A030431
Primes of form 10n+3.
Original entry on oeis.org
3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
Offset: 1
A007811
Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.
Original entry on oeis.org
1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1
Cf.
A024912,
A102338,
A102342,
A102700,
A007530,
A014561,
A008471,
A032352,
A216292,
A216293,
A125855.
-
a007811 n = a007811_list !! (n-1)
a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $
iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9]
-- Reinhard Zumkeller, Jul 18 2014
-
[n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
-
for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
-
Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ]
Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
-
p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
-
use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017
A023238
Primes p such that 10*p + 3 is also prime.
Original entry on oeis.org
2, 5, 7, 11, 17, 19, 23, 29, 31, 37, 43, 59, 61, 67, 73, 101, 103, 109, 137, 149, 173, 191, 193, 197, 199, 211, 227, 229, 233, 239, 263, 269, 271, 283, 331, 337, 353, 359, 367, 373, 379, 383, 401, 409, 449, 467, 479, 499, 523, 541, 557, 569, 607, 613, 617, 647, 673, 683
Offset: 1
A049508
Numbers k such that prime(k) == 3 (mod 10).
Original entry on oeis.org
2, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224, 227, 231
Offset: 1
A023269
Primes that remain prime through 2 iterations of function f(x) = 10x + 3.
Original entry on oeis.org
2, 7, 17, 19, 23, 37, 61, 67, 73, 101, 103, 173, 193, 233, 359, 383, 409, 479, 541, 557, 607, 613, 719, 809, 857, 997, 1013, 1033, 1109, 1117, 1237, 1297, 1361, 1459, 1531, 1549, 1699, 1823, 1871, 1979, 1999, 2069, 2131, 2161, 2347, 2377, 2399, 2447, 2663
Offset: 1
-
[n: n in [1..100000] | IsPrime(n) and IsPrime(10*n+3) and IsPrime(100*n+33)] // Vincenzo Librandi, Aug 04 2010
-
Select[Prime@ Range@ 400, Times @@ Boole@ PrimeQ@ Rest@ NestList[10 # + 3 &, #, 2] > 0 &] (* Michael De Vlieger, Sep 16 2016 *)
Select[Prime[Range[500]],AllTrue[Rest[NestList[10#+3&,#,2]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 03 2018 *)
A153403
Numbers n such that 10*n+3 is not prime.
Original entry on oeis.org
3, 6, 9, 12, 13, 14, 15, 18, 20, 21, 24, 25, 27, 30, 32, 33, 34, 36, 39, 40, 41, 42, 45, 47, 48, 49, 51, 53, 54, 55, 57, 58, 60, 62, 63, 66, 69, 70, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100
Offset: 1
Distribution of the terms in the following triangular array:
*;
*,*;
*,*,*;
*,*,6,*;
3,*,*,*,*;
*,*,*,*,14,*;
*,*,*,*,*,*,*;
*,*,*,15,*,*,*,*;
*,*,13,*,*,*,*,32,*;
6,*,*,*,*,27,*,*,*,*;
*,*,*,*,25,*,*,*,*,48,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 1)/5 with n >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
A102915
Numbers n such that n3 is prime and n is a multiple of 10.
Original entry on oeis.org
0, 10, 50, 110, 130, 200, 220, 250, 280, 290, 320, 380, 400, 460, 470, 490, 500, 530, 550, 590, 620, 670, 680, 710, 760, 770, 880, 910, 920, 940, 980, 1010, 1030, 1090, 1100, 1150, 1190, 1220, 1250, 1270, 1300, 1310, 1390, 1430, 1450, 1580, 1610, 1660, 1670, 1690, 1720, 1790, 1850, 1880
Offset: 1
If t=10, then t3 = 103 (prime).
If t=280, then t3 = 2803 (prime).
If t=490, then t3 = 4903 (prime).
A126332
Numbers k such that 10k + 13 is prime.
Original entry on oeis.org
0, 1, 3, 4, 6, 7, 9, 10, 15, 16, 18, 21, 22, 25, 27, 28, 30, 34, 36, 37, 42, 43, 45, 49, 51, 55, 58, 60, 63, 64, 66, 67, 72, 73, 76, 81, 84, 85, 87, 94, 97, 100, 102, 105, 108, 109, 111, 114, 115, 118, 120, 121, 127, 129, 136, 141, 142, 144, 147, 148, 151, 153, 154, 157
Offset: 1
For k = 100, 10*k + 13 = 1013 (prime).
Showing 1-8 of 8 results.
Comments