cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A030431 Primes of form 10n+3.

Original entry on oeis.org

3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5n+3.
Union of A132233, A132235, {3}. - Ray Chandler, Apr 07 2009
Primes p such that arithmetic mean of divisors of p^4 is an integer. There are 2 such sequences of primes, this one and A030430. - Ctibor O. Zizka, Oct 20 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Intersection of A000040 and A017305. - Iain Fox, Dec 30 2017

Crossrefs

Programs

Formula

a(n) = 10*A102338(n) + 3.

Extensions

Extended by Ray Chandler, Nov 07 2006

A049511 Numbers k such that prime(k) == 1 (mod 10).

Original entry on oeis.org

5, 11, 13, 18, 20, 26, 32, 36, 42, 43, 47, 53, 54, 58, 60, 64, 67, 79, 82, 83, 89, 94, 98, 100, 105, 110, 115, 116, 121, 125, 126, 133, 135, 141, 142, 152, 156, 160, 164, 167, 172, 173, 177, 178, 182, 190, 193, 194, 197, 202, 210, 212, 216, 218, 221, 230, 233
Offset: 1

Views

Author

Keywords

Comments

Also k for which prime(k) == 1 (mod 5). - Bruno Berselli, Mar 04 2016
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[210], Mod[Prime[ # ], 10] == 1 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    isok(n) = !((prime(n)-1) % 10); \\ Michel Marcus, Mar 04 2016
  • Sage
    [n for n in (1..300) if Mod(nth_prime(n), 10) == 1] # Bruno Berselli, Mar 04 2016
    

Formula

a(n) = A000720(A030430(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 28 2003
Formula corrected by Zak Seidov, Sep 20 2011

A102338 Numbers k such that 10k+3 is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 26, 28, 29, 31, 35, 37, 38, 43, 44, 46, 50, 52, 56, 59, 61, 64, 65, 67, 68, 73, 74, 77, 82, 85, 86, 88, 95, 98, 101, 103, 106, 109, 110, 112, 115, 116, 119, 121, 122, 128, 130, 137, 142, 143, 145, 148, 149, 152, 154, 155
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Examples

			For n=1, 10k+3 = 13 (prime).
For n=26, 10k+3 = 263 (prime).
For n=50, 10k+3 = 503 (prime).
		

Crossrefs

Cf. A023238 (subsequence of primes), A030431, A049508.

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(10*n+3)]; // Vincenzo Librandi, Apr 06 2011
    
  • Mathematica
    Select[Range[0, 160], PrimeQ[10# + 3] &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    isok(n) = isprime(10*n+3); \\ Michel Marcus, Sep 08 2016

Extensions

Edited and extended by Ray Chandler, Nov 07 2006

A049509 Numbers k such that prime(k) == 7 (mod 10).

Original entry on oeis.org

4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217, 219, 225
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[240], Mod[Prime[ # ], 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)

Formula

a(n) = A000720(A030432(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 07 2006

A049510 Numbers k such that prime(k) == 9 (mod 10).

Original entry on oeis.org

8, 10, 17, 22, 24, 29, 34, 35, 41, 46, 50, 52, 57, 70, 72, 75, 77, 80, 81, 85, 87, 92, 95, 97, 104, 109, 114, 120, 127, 128, 131, 136, 140, 145, 146, 149, 157, 158, 169, 171, 175, 176, 180, 186, 189, 201, 204, 205, 207, 209, 215, 222, 223, 226, 228, 232, 237, 239
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[240], Mod[Prime[ # ], 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)

Formula

a(n) = A000720(A030433(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 07 2006

A244739 Numbers k such that (prime(k) mod 5) == 0 (mod 3).

Original entry on oeis.org

2, 3, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A244739, A024707, A244741.

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Cf. A039703, A244738, A024707, A244741, A244735. Essentially the same as A049508.

Programs

  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)

A240839 Both n and prime(n) are primes congruent to 3 (mod 10).

Original entry on oeis.org

23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163, 1213, 1223, 1433, 1453, 1493, 1523, 1723, 1733, 1933, 1993, 2113, 2203, 2803, 2833, 2903, 3023, 3203, 3343, 3433, 3733, 3823, 3833, 4003, 4243, 4373, 4483, 4513, 4733, 4813, 4903, 4943, 4993, 5333, 5503, 5743, 6143, 6343, 6833, 7013
Offset: 1

Views

Author

Zak Seidov, Apr 13 2014

Keywords

Comments

Intersection of A030431 and A049508.

Examples

			prime(23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163)  =  (83, 563, 1913, 3593, 6323, 6863, 7523, 7753, 8233, 9403).
		

Crossrefs

Programs

  • Mathematica
    Intersection[A030431 = Select[Range[3, 1000003, 10], PrimeQ], PrimePi[A030431]] (* gives 469 terms for prime(n) up to 10^6 *)
    Select[Prime[Range[50000]],Mod[#,10]==Mod[Prime[#],10]==3&] (* gives 3126 terms from the first 50000 primes *)(* Harvey P. Dale, Nov 29 2014 *)
  • PARI
    s=[]; forprime(n=2, 8000, if(n%10==3 && prime(n)%10==3, s=concat(s, n))); s \\ Colin Barker, Apr 16 2014
Showing 1-7 of 7 results.