cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A030430 Primes of the form 10*n+1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*n+1 or equivalently 5*n+6.
Primes p such that the arithmetic mean of divisors of p^4 is an integer: A000203(p^4)/A000005(p^4) = C. - Ctibor O. Zizka, Sep 15 2008
Being a subset of A141158, this is also a subset of the primes of form x^2-5*y^2. - Tito Piezas III, Dec 28 2008
5 is quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Primes p such that 5 divides sigma(p^4), cf. A274397. - M. F. Hasler, Jul 10 2016

Crossrefs

Cf. A024912, A045453, A049511, A081759, A017281, A010051, A004615 (multiplicative closure).
Cf. A001583 (subsequence).
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009

Programs

  • Haskell
    a030430 n = a030430_list !! (n-1)
    a030430_list = filter ((== 1) . a010051) a017281_list
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *)
    Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
  • PARI
    is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
    
  • PARI
    lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017

Formula

a(n) = 10*A024912(n)+1 = 5*A081759(n)+6.
A104146(floor(a(n)/10)) = 1.
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009
a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012
Intersection of A000040 and A017281. - Iain Fox, Dec 30 2017

A024912 Numbers k such that 10*k + 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 7, 10, 13, 15, 18, 19, 21, 24, 25, 27, 28, 31, 33, 40, 42, 43, 46, 49, 52, 54, 57, 60, 63, 64, 66, 69, 70, 75, 76, 81, 82, 88, 91, 94, 97, 99, 102, 103, 105, 106, 109, 115, 117, 118, 120, 123, 129, 130, 132, 136, 138, 145, 147, 148, 151, 153, 157, 160, 162
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (A081759(n)+1)/2.

A081759 Numbers n such that 5n+6 is prime.

Original entry on oeis.org

1, 5, 7, 11, 13, 19, 25, 29, 35, 37, 41, 47, 49, 53, 55, 61, 65, 79, 83, 85, 91, 97, 103, 107, 113, 119, 125, 127, 131, 137, 139, 149, 151, 161, 163, 175, 181, 187, 193, 197, 203, 205, 209, 211, 217, 229, 233, 235, 239, 245, 257, 259, 263, 271, 275, 289
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 21 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Magma
    [n: n in [0..300]| IsPrime(5*n + 6)]; // Vincenzo Librandi, Oct 16 2012
    
  • Maple
    A081759 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(isprime(5*k+6))then return k: fi: od: end: seq(A081759(n),n=1..100); # Nathaniel Johnston, May 28 2011
  • Mathematica
    Select[Range[300], PrimeQ[5# + 6] &] (* Ray Chandler, Dec 06 2006 *)
  • PARI
    is(n)=isprime(5*n+6) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = 2*A024912(n) - 1.

Extensions

Corrected by Ray Chandler, Nov 22 2003

A049508 Numbers k such that prime(k) == 3 (mod 10).

Original entry on oeis.org

2, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224, 227, 231
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[240], Mod[Prime[ # ], 10] == 3 &] (* Ray Chandler, Nov 07 2006 *)

Formula

a(n) = A000720(A030431(n)). - Ray Chandler, Nov 07 2006

Extensions

Edited and extended by Ray Chandler, Nov 07 2006

A049509 Numbers k such that prime(k) == 7 (mod 10).

Original entry on oeis.org

4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217, 219, 225
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[240], Mod[Prime[ # ], 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)

Formula

a(n) = A000720(A030432(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 07 2006

A049510 Numbers k such that prime(k) == 9 (mod 10).

Original entry on oeis.org

8, 10, 17, 22, 24, 29, 34, 35, 41, 46, 50, 52, 57, 70, 72, 75, 77, 80, 81, 85, 87, 92, 95, 97, 104, 109, 114, 120, 127, 128, 131, 136, 140, 145, 146, 149, 157, 158, 169, 171, 175, 176, 180, 186, 189, 201, 204, 205, 207, 209, 215, 222, 223, 226, 228, 232, 237, 239
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[240], Mod[Prime[ # ], 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)

Formula

a(n) = A000720(A030433(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 07 2006

A088561 A088555 indexed by A000040.

Original entry on oeis.org

11, 13, 18, 20, 26, 36, 43, 47, 53, 58, 64, 79, 82, 94, 98, 100, 105, 116, 121, 125, 126, 133, 135, 142, 156, 164, 167, 178, 190, 193, 197, 210, 216, 218, 233, 248, 271, 279, 286, 291, 297, 305, 318, 326, 331, 335, 344, 347, 362, 369, 374, 381, 395, 400, 406
Offset: 1

Views

Author

Ray Chandler, Nov 28 2003

Keywords

Comments

Subset of A049511.

Crossrefs

Formula

a(n) = k such that A000040(k) = A088555(n).
a(n) = A000720(A088555(n)). - Michel Marcus, Aug 06 2021

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A269703 Numbers k such that prime(k) == 1 (mod 7).

Original entry on oeis.org

10, 14, 20, 30, 31, 45, 47, 52, 60, 68, 75, 82, 87, 90, 94, 101, 113, 115, 120, 122, 126, 132, 134, 144, 153, 156, 162, 163, 169, 177, 183, 192, 209, 213, 220, 226, 233, 239, 250, 251, 262, 267, 269, 288, 295, 304, 306, 315, 320, 324, 330, 337, 342, 344, 346
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2016

Keywords

Comments

The asymptotic density of this sequence is 1/6 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Examples

			a(1) = 10 because prime(10) = 29 and 29 == 1 (mod 7).
		

Crossrefs

The associated primes are in A004619.
Sequences of numbers n such that prime(n) == 1 (mod k): A091178 (k=3,6), A080147 (k=4), A049511 (k=5,10), this sequence (k=7), A269704 (k=8), A269705 (k=9).

Programs

  • Magma
    [n: n in [1..500] | NthPrime(n) mod 7 eq 1];
    
  • Mathematica
    Select[Range[500], Mod[Prime[#], 7] == 1 &]
  • PARI
    lista(nn) = for(n=1, nn, if(Mod(prime(n),7)==1, print1(n, ", "))); \\ Altug Alkan, Mar 04 2016

Formula

a(n) ~ 6*n. - Charles R Greathouse IV, Sep 20 2016 [Corrected by Amiram Eldar, Mar 01 2021]
Showing 1-8 of 8 results.