cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A139368 a(n) = A024912(n) - A102342(n).

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 3, 5, 4, 5, 5, 3, 2, 1, 1, 2, 7, 8, 7, 7, 4, 6, 6, 3, 5, 6, 6, 6, 8, 6, 8, 4, 6, 4, 9, 9, 9, 10, 11, 12, 10, 11, 10, 12, 16, 9, 9, 9, 5, 8, 7, 5, 7, 8, 13, 11, 6, 7, 5, 1, 1, 2, 10, 11, 15, 15, 14, 12, 10, 12, 9, 9, 14, 18, 13, 14, 13, 14, 14, 12, 8, 8, 8, 7, 8, 4, 6, 7, 11, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 09 2008

Keywords

Comments

A139368(219) = -4.

Programs

  • Maple
    From R. J. Mathar, Apr 25 2010: (Start)
    A102342 := proc(n) option remember; if n = 1 then 0; else for a from procname(n-1)+1 do if isprime(10*a+7) then return a; end if; end do: end if; end proc:
    A024912 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime(10*a+1) then return a; end if; end do: end if; end proc:
    A139368 := proc(n) A024912(n)-A102342(n) ; end proc: seq(A139368(n),n=1..120) ; (End)

Extensions

More terms from R. J. Mathar, Apr 25 2010

A030430 Primes of the form 10*n+1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*n+1 or equivalently 5*n+6.
Primes p such that the arithmetic mean of divisors of p^4 is an integer: A000203(p^4)/A000005(p^4) = C. - Ctibor O. Zizka, Sep 15 2008
Being a subset of A141158, this is also a subset of the primes of form x^2-5*y^2. - Tito Piezas III, Dec 28 2008
5 is quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Primes p such that 5 divides sigma(p^4), cf. A274397. - M. F. Hasler, Jul 10 2016

Crossrefs

Cf. A024912, A045453, A049511, A081759, A017281, A010051, A004615 (multiplicative closure).
Cf. A001583 (subsequence).
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009

Programs

  • Haskell
    a030430 n = a030430_list !! (n-1)
    a030430_list = filter ((== 1) . a010051) a017281_list
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *)
    Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
  • PARI
    is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
    
  • PARI
    lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017

Formula

a(n) = 10*A024912(n)+1 = 5*A081759(n)+6.
A104146(floor(a(n)/10)) = 1.
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009
a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012
Intersection of A000040 and A017281. - Iain Fox, Dec 30 2017

A007811 Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.

Original entry on oeis.org

1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1

Views

Author

N. J. A. Sloane and J. H. Conway, Mar 15 1996

Keywords

Crossrefs

Programs

  • Haskell
    a007811 n = a007811_list !! (n-1)
    a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
    
  • Maple
    for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
  • Mathematica
    Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ]
    Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Perl
    use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017

Formula

a(n) = 3*A014561(n) + 1. - Zak Seidov, Sep 21 2009

A081759 Numbers n such that 5n+6 is prime.

Original entry on oeis.org

1, 5, 7, 11, 13, 19, 25, 29, 35, 37, 41, 47, 49, 53, 55, 61, 65, 79, 83, 85, 91, 97, 103, 107, 113, 119, 125, 127, 131, 137, 139, 149, 151, 161, 163, 175, 181, 187, 193, 197, 203, 205, 209, 211, 217, 229, 233, 235, 239, 245, 257, 259, 263, 271, 275, 289
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 21 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Magma
    [n: n in [0..300]| IsPrime(5*n + 6)]; // Vincenzo Librandi, Oct 16 2012
    
  • Maple
    A081759 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(isprime(5*k+6))then return k: fi: od: end: seq(A081759(n),n=1..100); # Nathaniel Johnston, May 28 2011
  • Mathematica
    Select[Range[300], PrimeQ[5# + 6] &] (* Ray Chandler, Dec 06 2006 *)
  • PARI
    is(n)=isprime(5*n+6) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = 2*A024912(n) - 1.

Extensions

Corrected by Ray Chandler, Nov 22 2003

A049511 Numbers k such that prime(k) == 1 (mod 10).

Original entry on oeis.org

5, 11, 13, 18, 20, 26, 32, 36, 42, 43, 47, 53, 54, 58, 60, 64, 67, 79, 82, 83, 89, 94, 98, 100, 105, 110, 115, 116, 121, 125, 126, 133, 135, 141, 142, 152, 156, 160, 164, 167, 172, 173, 177, 178, 182, 190, 193, 194, 197, 202, 210, 212, 216, 218, 221, 230, 233
Offset: 1

Views

Author

Keywords

Comments

Also k for which prime(k) == 1 (mod 5). - Bruno Berselli, Mar 04 2016
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[210], Mod[Prime[ # ], 10] == 1 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    isok(n) = !((prime(n)-1) % 10); \\ Michel Marcus, Mar 04 2016
  • Sage
    [n for n in (1..300) if Mod(nth_prime(n), 10) == 1] # Bruno Berselli, Mar 04 2016
    

Formula

a(n) = A000720(A030430(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 28 2003
Formula corrected by Zak Seidov, Sep 20 2011

A023237 Primes p such that 10*p + 1 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 43, 97, 103, 109, 151, 157, 181, 193, 211, 241, 271, 337, 349, 367, 409, 421, 439, 487, 523, 547, 571, 601, 613, 631, 691, 733, 769, 811, 823, 829, 883, 937, 1009, 1021, 1033, 1039, 1063, 1069, 1117, 1201, 1249, 1279, 1291, 1459, 1483, 1489
Offset: 1

Views

Author

Keywords

Comments

Primes which with a 1 appended stay prime.
Corresponding values of 10n + 1 in A055781. - Jaroslav Krizek, Jul 14 2010
Subsequence of A024912. - Michel Marcus, May 21 2014

Crossrefs

Cf. A024912, A055781, A105435, A005384 (2*p + 1), A158017 (10*p - 1).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(10*n+1)]; // Vincenzo Librandi, Nov 20 2010
    
  • Magma
    [p: p in PrimesUpTo(1100)| IsPrime(10*p+1)]; // Vincenzo Librandi, May 21 2014
  • Maple
    with(numtheory); for i from 1 to 500 do if isprime(10*ithprime(i)+1) then printf(`%d,`, ithprime(i)) fi: od: # James Sellers, Apr 09 2005
  • Mathematica
    Select[Prime[Range[ 240]], PrimeQ[FromDigits[Join[IntegerDigits[ # ], {1}]]] &] (* Robert G. Wilson v, Apr 09 2005 *)
    Select[Prime[Range[900]], PrimeQ[10 # + 1] &] (* Vincenzo Librandi, May 21 2014 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of M. F. Hasler, Aug 24 2007

A124410 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.

Original entry on oeis.org

5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A102248 Numbers n such that n111 is prime.

Original entry on oeis.org

2, 4, 8, 10, 16, 22, 25, 26, 28, 35, 40, 44, 47, 50, 58, 65, 68, 70, 79, 80, 86, 92, 94, 95, 101, 109, 112, 113, 128, 131, 136, 140, 142, 143, 149, 152, 154, 169, 170, 179, 182, 184, 187, 196, 205, 208, 217, 218, 227, 235, 236, 260, 262, 263, 266, 278, 283, 284
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 18 2005

Keywords

Examples

			At n=2, n111 = 2111 (prime).
At n=50, n111 = 50111 (prime).
At n=95, n111 = 95111 (prime).
		

Crossrefs

Cf. A024912.

Programs

  • Mathematica
    Select[ Range[ 290], PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ { #, 1, 1, 1}]]] &] (* Robert G. Wilson v, Feb 21 2005 *)
    Select[Range[300],PrimeQ[1000#+111]&] (* Harvey P. Dale, Jul 07 2019 *)
  • PARI
    is(n)=isprime(1000*n+111) \\ Charles R Greathouse IV, May 22 2017

Extensions

More terms from Robert G. Wilson v, Feb 21 2005

A101471 Numbers k such that the number k11 is prime.

Original entry on oeis.org

0, 2, 3, 8, 9, 15, 18, 20, 21, 23, 24, 27, 30, 35, 39, 41, 42, 50, 57, 60, 62, 63, 69, 72, 74, 80, 81, 83, 90, 93, 95, 98, 101, 102, 107, 113, 114, 120, 122, 125, 126, 129, 134, 137, 140, 144, 155, 161, 164, 168, 170, 179, 182, 183, 189, 192, 200, 204, 206, 210, 212
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 30 2005, Feb 18 2005

Keywords

Comments

k such that 100*k+11 is prime. - Robert Israel, Jul 30 2015

Examples

			If k=2,  then k11 =  211 (prime);
If k=50, then k11 = 5011 (prime);
If k=98, then k11 = 9811 (prime).
		

Crossrefs

Cf. A024912 (10n+1 is prime), A167442 (the actual primes 100n+11).

Programs

  • Magma
    [n: n in [0..250] | IsPrime(Seqint(Intseq(11) cat Intseq(n)))]; // Vincenzo Librandi, Jul 31 2015
    
  • Magma
    [n: n in [0..240] |IsPrime(100*n+11)]; // Vincenzo Librandi, Jul 31 2015
    
  • Maple
    select(t -> isprime(100*t+11), [$0..1000]); # Robert Israel, Jul 30 2015
  • Mathematica
    Select[ Range[0, 215], PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ { #, 1, 1}]]] &] (* Robert G. Wilson v, Feb 21 2005 *)
    Select[Range[0,250],PrimeQ[100#+11]&] (* Harvey P. Dale, Oct 11 2018 *)
  • PARI
    is(n)=isprime(100*n+11) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

Corrected and extended by Robert G. Wilson v, Feb 21 2005
Showing 1-10 of 19 results. Next