A023645 a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even.
0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 7, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 8, 2, 4, 3, 4, 1, 6, 3, 6, 3, 2, 1, 10, 1, 2, 5, 5, 3, 6, 1, 4, 3, 6, 1, 10, 1, 2, 5, 4, 3, 6, 1, 8, 4, 2, 1, 10, 3, 2, 3, 6, 1, 10, 3, 4, 3, 2, 3, 10, 1, 4, 5, 7, 1, 6, 1, 6
Offset: 1
Examples
x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + 4*x^12 + ...
References
- CRC Handbook of Combinatorial Designs, 1996, p. 649.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Felix Fröhlich et al., Rings of regular polygons, SeqFan thread, March 26 2017.
- Gordon Royle, Transitive Graphs
Crossrefs
Programs
-
Maple
with(numtheory); f := n->if n mod 2 = 1 then tau(n)-1 else tau(n)-2; fi;
-
Mathematica
Table[s = DivisorSigma[0, n]; If[OddQ[n], s - 1, s - 2], {n, 100}] (* T. D. Noe, Nov 18 2013 *) Array[DivisorSigma[0, #] - 1 - Boole@ EvenQ@ # &, 104] (* Michael De Vlieger, Apr 25 2017 *)
-
PARI
{a(n) = if( n<1, 0, numdiv(n) - 2 + n%2)} /* Michael Somos, Apr 29 2003 */
-
PARI
a(n) = sumdiv(n, d, d < n/2); \\ Michel Marcus, Apr 01 2017
Formula
G.f.: Sum_{k>0} x^(3*k) / (1 - x^k). - Michael Somos, Apr 29 2003.
a(n) = A072528(n+2,2) for n > 2. - Peter Munn, May 14 2017
From Peter Bala, Jan 13 2021: (Start)
a(n) = Sum_{ d|n, d < n/2 } 1. Cf. A296955.
G.f.: Sum_{k >= 3} x^k/(1 - x^k). (End)
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 5/2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024
Extensions
More terms from Vladeta Jovovic, Dec 03 2001
Comments