A023218
Primes p such that 5*p + 4 is also prime.
Original entry on oeis.org
3, 5, 11, 17, 29, 47, 53, 71, 83, 89, 101, 113, 131, 167, 251, 257, 263, 281, 311, 389, 419, 461, 467, 479, 491, 509, 521, 557, 563, 587, 593, 599, 617, 641, 659, 677, 743, 797, 809, 827, 857, 881, 929, 977, 983, 1019, 1061, 1103, 1187, 1217, 1259, 1277, 1289, 1319
Offset: 1
-
[n: n in [0..1000] | IsPrime(n) and IsPrime(5*n+4)]; // Vincenzo Librandi, Nov 20 2010
-
A023218:=n->`if`(isprime(n) and isprime(5*n+4), n, NULL): seq(A023218(n), n=1..2*10^3); # Wesley Ivan Hurt, Sep 07 2016
-
lst={};Do[If[PrimeQ[n]&&PrimeQ[5*n+4], AppendTo[lst, n]], {n, 13^3}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
Select[Prime[Range[300]],PrimeQ[5#+4]&] (* Harvey P. Dale, Dec 31 2013 *)
A153343
Numbers k such that 5*k + 4 is not prime.
Original entry on oeis.org
0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 86, 88
Offset: 1
Distribution of the odd terms in the following triangular array:
1;
*, *;
*, *, 9;
*, *, *, *;
*, *, *, 19, *;
7, *, *, *, *, 33;
*, *, *, *, *, *, *;
*, *, 23, *, *, *, *, 57;
*, *, *, *, 41, *, *, *, *;
*, *, *, 37, *, *, *, *, 79, *;
13, *, *, *, *, 59, *, *, *, *, 105;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 3)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..150] | not IsPrime(5*n + 4)]; // Vincenzo Librandi, Jan 12 2013
-
# produces the sequence apart from the initial terms 0 and 1
for n from 0 to 100 do
if irem(factorial(5*n), 5*n+4) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], !PrimeQ[5*# + 4]&] (* Vincenzo Librandi, Jan 12 2013 *)
A111225
Numbers n such that 5*n + 8 is prime.
Original entry on oeis.org
1, 3, 7, 9, 13, 15, 19, 21, 31, 33, 37, 43, 45, 51, 55, 57, 61, 69, 73, 75, 85, 87, 91, 99, 103, 111, 117, 121, 127, 129, 133, 135, 145, 147, 153, 163, 169, 171, 175, 189, 195, 201, 205, 211, 217, 219, 223, 229, 231, 237, 241, 243, 255, 259, 273, 283, 285, 289
Offset: 1
If n=103 then 5*n + 8 = 523 (prime).
A111224
Numbers n such that 5*n + 7 is prime.
Original entry on oeis.org
0, 2, 6, 8, 12, 18, 20, 24, 26, 30, 32, 38, 44, 50, 54, 60, 62, 66, 68, 72, 78, 90, 92, 96, 108, 110, 114, 116, 120, 122, 128, 134, 144, 150, 156, 158, 164, 170, 174, 176, 180, 186, 188, 192, 194, 198, 216, 218, 222, 236, 242, 246, 254, 258, 260, 264, 272, 284
Offset: 1
If n=108 then 5*n + 7 = 547 (prime).
A153355
Numbers k such that 5k-1 is a prime.
Original entry on oeis.org
4, 6, 12, 16, 18, 22, 28, 30, 36, 40, 46, 48, 54, 70, 72, 76, 78, 82, 84, 88, 90, 96, 100, 102, 114, 120, 124, 132, 142, 144, 148, 154, 162, 166, 168, 172, 184, 186, 202, 204, 208, 210, 214, 222, 226, 246, 250, 252, 256, 258, 264, 280, 282, 286, 288, 292, 298
Offset: 1
5*4 - 1 = 19 is a prime, so 4 is a term;
5*30 - 1 = 149 is a prime, so 30 is a term.
A023314
Primes that remain prime through 4 iterations of function f(x) = 5x + 4.
Original entry on oeis.org
263, 1217, 2141, 4673, 5333, 6983, 10973, 11423, 26669, 27143, 28697, 74843, 85061, 101063, 102647, 114113, 121001, 133349, 141623, 150497, 154823, 199877, 200183, 202409, 203039, 207953, 259697, 259781, 275813, 280487, 294167, 305477, 322727
Offset: 1
A126956
Numbers n such that 3n+2, 4n+3 and 5n+4 are primes.
Original entry on oeis.org
5, 17, 77, 89, 119, 185, 257, 287, 395, 665, 755, 797, 929, 1175, 1259, 1337, 1379, 1445, 1469, 1769, 2057, 2105, 3125, 3419, 3437, 3629, 3815, 3989, 4079, 4157, 4175, 4217, 4367, 4445, 4847, 5045, 5375, 6089, 6137, 6167, 6359, 6419, 6485, 6725, 6887
Offset: 1
Take n = 185. Then 3*185 + 2 = 557, 4*185 + 3 = 743 and 5*185 + 4 = 929 are primes.
-
Select[Range[7000], PrimeQ[3# + 2] && PrimeQ[4# + 3] && PrimeQ[5# + 4] &] (* Ray Chandler, Mar 20 2007 *)
Select[Range[7000],AllTrue[{3#+2,4#+3,5#+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *)
A023342
Primes that remain prime through 5 iterations of function f(x) = 5x + 4.
Original entry on oeis.org
5333, 26669, 294167, 324869, 344189, 578297, 676829, 807407, 894893, 1078559, 1114427, 1174487, 1624349, 1883363, 2247923, 2926769, 3075029, 3196871, 3427871, 3558407, 4037039, 4205879, 5392799, 6130823, 6479423, 6714497, 6750113, 6915299
Offset: 1
-
[n: n in [1..10000000] | IsPrime(n) and IsPrime(5*n+4) and IsPrime(25*n+24) and IsPrime(125*n+124) and IsPrime(625*n+624) and IsPrime(3125*n+3124)] // Vincenzo Librandi, Aug 05 2010
-
Select[Prime[Range[500000]],AllTrue[Rest[NestList[5#+4&,#,5]],PrimeQ]&] (* Harvey P. Dale, Jan 01 2022 *)
A178082
Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.
Original entry on oeis.org
3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
Offset: 1
The associated prime quadruplets start as:
11, 13, 17, 19; (for n = 3)
101, 103, 107, 109; (for n = 21)
191, 193, 197, 199; (for n = 39)
821, 823, 827, 829;
1481, 1483, 1487, 1489;
1871, 1873, 1877, 1879;
2081, 2083, 2087, 2089;
3251, 3253, 3257, 3259;
3461, 3463, 3467, 3469;
5651, 5653, 5657, 5659;
9431, 9433, 9437, 9439;
13001, 13003, 13007, 13009;
15641, 15643, 15647, 15649;
15731, 15733, 15737, 15739;
16061, 16063, 16067, 16069;
18041, 18043, 18047, 18049;
18911, 18913, 18917, 18919;
19421, 19423, 19427, 19429.
-
[n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; // Vincenzo Librandi, Nov 30 2010
-
Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)
A111226
Numbers n such that 5*n + 12 is prime.
Original entry on oeis.org
1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 37, 43, 49, 53, 59, 61, 65, 67, 71, 77, 89, 91, 95, 107, 109, 113, 115, 119, 121, 127, 133, 143, 149, 155, 157, 163, 169, 173, 175, 179, 185, 187, 191, 193, 197, 215, 217, 221, 235, 241, 245, 253, 257, 259, 263, 271, 283, 287
Offset: 1
If n=109 then 5*n + 12 = 557 (prime).
Showing 1-10 of 11 results.
Comments