cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A023218 Primes p such that 5*p + 4 is also prime.

Original entry on oeis.org

3, 5, 11, 17, 29, 47, 53, 71, 83, 89, 101, 113, 131, 167, 251, 257, 263, 281, 311, 389, 419, 461, 467, 479, 491, 509, 521, 557, 563, 587, 593, 599, 617, 641, 659, 677, 743, 797, 809, 827, 857, 881, 929, 977, 983, 1019, 1061, 1103, 1187, 1217, 1259, 1277, 1289, 1319
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, all terms are congruent to 5 (mod 6). - John Cerkan, Sep 07 2016

Crossrefs

Subsequence of primes of A024897.

Programs

A153343 Numbers k such that 5*k + 4 is not prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 86, 88
Offset: 1

Views

Author

Vincenzo Librandi, Dec 24 2008

Keywords

Comments

Apart from a(0) = 0 and a(1) = 1 this sequence comprises those numbers k such that (5*k)!/(5*k + 4) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the odd terms in the following triangular array:
   1;
   *,   *;
   *,   *,   9;
   *,   *,   *,   *;
   *,   *,   *,  19,   *;
   7,   *,   *,   *,   *,  33;
   *,   *,   *,   *,   *,   *,   *;
   *,   *,  23,   *,   *,   *,   *,  57;
   *,   *,   *,   *,  41,   *,   *,   *,   *;
   *,   *,   *,  37,   *,   *,   *,   *,  79,   *;
  13,   *,   *,   *,   *,  59,   *,   *,   *,   *,  105;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 3)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(5*n + 4)]; // Vincenzo Librandi, Jan 12 2013
  • Maple
    # produces the sequence apart from the initial terms 0 and 1
    for n from 0 to 100 do
    if irem(factorial(5*n), 5*n+4) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[0, 200], !PrimeQ[5*# + 4]&] (* Vincenzo Librandi, Jan 12 2013 *)

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010
0 added by Arkadiusz Wesolowski, Aug 03 2011

A111225 Numbers n such that 5*n + 8 is prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 31, 33, 37, 43, 45, 51, 55, 57, 61, 69, 73, 75, 85, 87, 91, 99, 103, 111, 117, 121, 127, 129, 133, 135, 145, 147, 153, 163, 169, 171, 175, 189, 195, 201, 205, 211, 217, 219, 223, 229, 231, 237, 241, 243, 255, 259, 273, 283, 285, 289
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=103 then 5*n + 8 = 523 (prime).
		

Crossrefs

Programs

A111224 Numbers n such that 5*n + 7 is prime.

Original entry on oeis.org

0, 2, 6, 8, 12, 18, 20, 24, 26, 30, 32, 38, 44, 50, 54, 60, 62, 66, 68, 72, 78, 90, 92, 96, 108, 110, 114, 116, 120, 122, 128, 134, 144, 150, 156, 158, 164, 170, 174, 176, 180, 186, 188, 192, 194, 198, 216, 218, 222, 236, 242, 246, 254, 258, 260, 264, 272, 284
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=108 then 5*n + 7 = 547 (prime).
		

Crossrefs

Programs

A153355 Numbers k such that 5k-1 is a prime.

Original entry on oeis.org

4, 6, 12, 16, 18, 22, 28, 30, 36, 40, 46, 48, 54, 70, 72, 76, 78, 82, 84, 88, 90, 96, 100, 102, 114, 120, 124, 132, 142, 144, 148, 154, 162, 166, 168, 172, 184, 186, 202, 204, 208, 210, 214, 222, 226, 246, 250, 252, 256, 258, 264, 280, 282, 286, 288, 292, 298
Offset: 1

Views

Author

Vincenzo Librandi, Dec 24 2008

Keywords

Comments

One more than the value of A024897 at the same index. - R. J. Mathar, Jan 05 2009

Examples

			5*4 - 1 = 19 is a prime, so 4 is a term;
5*30 - 1 = 149 is a prime, so 30 is a term.
		

Programs

Formula

The set of numbers (1+A030433(k))/5, k=1,2,3,4,.... - R. J. Mathar, Jan 03 2009

Extensions

Extended by R. J. Mathar, Jan 05 2009

A023314 Primes that remain prime through 4 iterations of function f(x) = 5x + 4.

Original entry on oeis.org

263, 1217, 2141, 4673, 5333, 6983, 10973, 11423, 26669, 27143, 28697, 74843, 85061, 101063, 102647, 114113, 121001, 133349, 141623, 150497, 154823, 199877, 200183, 202409, 203039, 207953, 259697, 259781, 275813, 280487, 294167, 305477, 322727
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 5*p+4, 25*p+24, 125*p+124 and 625*p+624 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023218, A023253, A023284, and A024897.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(5*n+4) and IsPrime(25*n+24) and IsPrime(125*n+124) and IsPrime(625*n+624)]; // Vincenzo Librandi, Aug 04 2010

Formula

a(n) == 11 or 41 (mod 42). - John Cerkan, Oct 07 2016

A126956 Numbers n such that 3n+2, 4n+3 and 5n+4 are primes.

Original entry on oeis.org

5, 17, 77, 89, 119, 185, 257, 287, 395, 665, 755, 797, 929, 1175, 1259, 1337, 1379, 1445, 1469, 1769, 2057, 2105, 3125, 3419, 3437, 3629, 3815, 3989, 4079, 4157, 4175, 4217, 4367, 4445, 4847, 5045, 5375, 6089, 6137, 6167, 6359, 6419, 6485, 6725, 6887
Offset: 1

Views

Author

J. M. Bergot, Mar 19 2007

Keywords

Examples

			Take n = 185. Then 3*185 + 2 = 557, 4*185 + 3 = 743 and 5*185 + 4 = 929 are primes.
		

Crossrefs

Intersection of A024893, A095278, A024897. Cf. A126955.

Programs

  • Mathematica
    Select[Range[7000], PrimeQ[3# + 2] && PrimeQ[4# + 3] && PrimeQ[5# + 4] &] (* Ray Chandler, Mar 20 2007 *)
    Select[Range[7000],AllTrue[{3#+2,4#+3,5#+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *)

Extensions

Corrected and extended by Ray Chandler, Stuart Clary, Robert G. Wilson v and Zak Seidov, Mar 20 2007

A023342 Primes that remain prime through 5 iterations of function f(x) = 5x + 4.

Original entry on oeis.org

5333, 26669, 294167, 324869, 344189, 578297, 676829, 807407, 894893, 1078559, 1114427, 1174487, 1624349, 1883363, 2247923, 2926769, 3075029, 3196871, 3427871, 3558407, 4037039, 4205879, 5392799, 6130823, 6479423, 6714497, 6750113, 6915299
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 5*p+4, 25*p+24, 125*p+124, 625*p+624 and 3125*p+3124 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023218, A023253, A023284, A023314, and A024897.

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and IsPrime(5*n+4) and IsPrime(25*n+24) and IsPrime(125*n+124) and IsPrime(625*n+624) and IsPrime(3125*n+3124)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    Select[Prime[Range[500000]],AllTrue[Rest[NestList[5#+4&,#,5]],PrimeQ]&] (* Harvey P. Dale, Jan 01 2022 *)

Formula

a(n) == 41 (mod 42). - John Cerkan, Oct 20 2016

A178082 Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.

Original entry on oeis.org

3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
Offset: 1

Views

Author

Roger L. Bagula, May 19 2010

Keywords

Examples

			The associated prime quadruplets start as:
     11,    13,    17,    19;   (for n =  3)
    101,   103,   107,   109;   (for n = 21)
    191,   193,   197,   199;   (for n = 39)
    821,   823,   827,   829;
   1481,  1483,  1487,  1489;
   1871,  1873,  1877,  1879;
   2081,  2083,  2087,  2089;
   3251,  3253,  3257,  3259;
   3461,  3463,  3467,  3469;
   5651,  5653,  5657,  5659;
   9431,  9433,  9437,  9439;
  13001, 13003, 13007, 13009;
  15641, 15643, 15647, 15649;
  15731, 15733, 15737, 15739;
  16061, 16063, 16067, 16069;
  18041, 18043, 18047, 18049;
  18911, 18913, 18917, 18919;
  19421, 19423, 19427, 19429.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; // Vincenzo Librandi, Nov 30 2010
  • Mathematica
    Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
    Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)

Formula

a(n) = A173037(n+1)/5.

A111226 Numbers n such that 5*n + 12 is prime.

Original entry on oeis.org

1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 37, 43, 49, 53, 59, 61, 65, 67, 71, 77, 89, 91, 95, 107, 109, 113, 115, 119, 121, 127, 133, 143, 149, 155, 157, 163, 169, 173, 175, 179, 185, 187, 191, 193, 197, 215, 217, 221, 235, 241, 245, 253, 257, 259, 263, 271, 283, 287
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 26 2005

Keywords

Examples

			If n=109 then 5*n + 12 = 557 (prime).
		

Crossrefs

Programs

Showing 1-10 of 11 results. Next