A026009
Triangular array T read by rows: T(n,0) = 1 for n >= 0; T(1,1) = 1; and for n >= 2, T(n,k) = T(n-1,k-1) + T(n-1,k) for k = 1,2,...,[(n+1)/2]; T(n,n/2 + 1) = T(n-1,n/2) if n is even.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 9, 1, 6, 15, 19, 9, 1, 7, 21, 34, 28, 1, 8, 28, 55, 62, 28, 1, 9, 36, 83, 117, 90, 1, 10, 45, 119, 200, 207, 90, 1, 11, 55, 164, 319, 407, 297, 1, 12, 66, 219, 483, 726, 704, 297, 1, 13, 78, 285, 702, 1209, 1430, 1001, 1, 14, 91, 363, 987, 1911, 2639, 2431, 1001
Offset: 0
From _Jonathon Kirkpatrick_, Jul 01 2016: (Start)
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3;
1, 4, 6, 3;
1, 5, 10, 9;
1, 6, 15, 19, 9;
1, 7, 21, 34, 28;
1, 8, 28, 55, 62, 28;
1, 9, 36, 83, 117, 90;
1, 10, 45, 119, 200, 207, 90;
1, 11, 55, 164, 319, 407, 297;
1, 12, 66, 219, 483, 726, 704, 297;
1, 13, 78, 285, 702, 1209, 1430, 1001;
... (End)
Diagonals of this sequence:
A000217,
A000245,
A026012,
A026013,
A026014,
A026015,
A026016,
A026017,
A026018,
A026019,
A026020,
A026021.
-
[1] cat [Binomial(n,k) - Binomial(n,k-3): k in [0..Floor((n+2)/2)], n in [1..15]]; // G. C. Greubel, Mar 18 2021
-
T[n_, k_]:= Binomial[n, k] - Binomial[n, k-3];
Join[{1}, Table[T[n, k], {n,14}, {k,0,Floor[(n+2)/2]}]//Flatten] (* G. C. Greubel, Mar 18 2021 *)
-
[1]+flatten([[binomial(n,k) - binomial(n,k-3) for k in (0..(n+2)//2)] for n in (1..15)]) # G. C. Greubel, Mar 18 2021
A026022
Triangular array T read by rows: T(n,0) = 1 for n >= 0; T(n,k) = C(n,k) for k = 1,2,...,n, for n = 1,2,3; and for n >= 4, T(n,k) = T(n-1,k-1) + T(n-1,k) for k = 1,2,...,[ (n+2)/2 ] and T(n,(n+3)/2) = T(n-1,(n+1)/2) if n is odd.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 5, 10, 10, 4, 1, 6, 15, 20, 14, 1, 7, 21, 35, 34, 14, 1, 8, 28, 56, 69, 48, 1, 9, 36, 84, 125, 117, 48, 1, 10, 45, 120, 209, 242, 165, 1, 11, 55, 165, 329, 451, 407, 165, 1, 12, 66, 220, 494, 780, 858, 572, 1, 13, 78, 286, 714, 1274, 1638, 1430, 572
Offset: 1
From _Philippe Deléham_, Mar 12 2013: (Start)
Triangle begins:
1
1, 1
1, 2, 1
1, 3, 3, 1
1, 4, 6, 4
1, 5, 10, 10, 4
1, 6, 15, 20, 14
1, 7, 21, 35, 34, 14
1, 8, 28, 56, 69, 48
1, 9, 36, 84, 125, 117, 48
1, 10, 45, 120, 209, 242, 165
1, 11, 55, 165, 329, 451, 407, 165
Pentagon arithmetic of Delannoy (in E. Lucas):
1, 1, 1, 1, 0
1, 2, 3, 4, 4, 0
1, 3, 6, 10, 14, 14, 0
1, 4, 10, 20, 34, 48, 48, 0
1, 5, 15, 35, 69, 117, 165, 165,
1, 6, 21, 56, 125, 242, 407, 572,
1, 7, 28, 84, 209, 451, 858, 1430 (End)
- E. Lucas, Théorie des Nombres, Albert Blanchard, Paris, 1958,tome1, p.88
-
{T(n, k) = if( 2*k < n+4, binomial( n, k) - binomial( n, k-4), 0)} /* Michael Somos, Jan 08 2012 */
A099376
An inverse Chebyshev transform of x^3.
Original entry on oeis.org
0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248
Offset: 0
-
[Catalan(n+2) -2*Catalan(n+1): n in [0..30]]; // G. C. Greubel, May 05 2021
-
Table[CatalanNumber[n+2] -2CatalanNumber[n+1], {n, 0, 30}] (* or *)
Table[4 Binomial[2#+3, #]/(#+4) &[n-1], {n, 0, 30}] (* Michael De Vlieger, Jan 10 2017, latter after Harvey P. Dale at A002057 *)
-
{a(n)= if(n<1, 0, n++; 2* binomial(2*n, n-2)/n)} /* Michael Somos, Apr 11 2007 */
-
[catalan_number(n+2) -2*catalan_number(n+1) for n in (0..30)] # G. C. Greubel, May 05 2021
A026020
a(n) = binomial(4n, n) - binomial(4n, n - 3).
Original entry on oeis.org
1, 4, 28, 219, 1804, 15314, 132572, 1163565, 10316924, 92195488, 829016968, 7492106505, 67991427828, 619193535380, 5655829748520, 51794730347745, 475390078267356, 4371917301657488, 40276635724273936
Offset: 0
a(n) = T(4n, n), where T is the array defined in
A026009.
-
[Binomial(4*n, n) - Binomial(4*n, n-3): n in [0..20]]; // G. C. Greubel, Mar 22 2021
-
A026020:= n-> binomial(4*n,n) - binomial(4*n,n-3); seq(A026020(n), n=0..20); # G. C. Greubel, Mar 22 2021
-
Table[Binomial[4n, n] - Binomial[4n, n - 3], {n, 0, 19}] (* Alonso del Arte, Jun 06 2019 *)
-
a(n) = binomial(4*n, n) - binomial(4*n, n-3) \\ Felix Fröhlich, Jun 06 2019
-
[binomial(4*n, n) - binomial(4*n, n-3) for n in (0..20)] # G. C. Greubel, Mar 22 2021
A071725
Expansion of (1+x^2*C^4)*C, where C = (1 - sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 1, 3, 10, 34, 117, 407, 1430, 5070, 18122, 65246, 236436, 861764, 3157325, 11622015, 42961470, 159419670, 593636670, 2217608250, 8308432140, 31212003420, 117544456770, 443690433654, 1678353186780, 6361322162444
Offset: 0
-
[6*((n^2+1)/((n+2)*(n+3)))*Catalan(n): n in [0..30]]; // G. C. Greubel, Mar 23 2021
-
A000108:= n-> binomial(2*n, n)/(n+1);
A071725:= n-> 6*((n^2+1)/((n+2)*(n+3)))*A000108(n);
seq(A071725(n), n=0..30); # G. C. Greubel, Mar 23 2021
-
CoefficientList[Series[(1 +x^2((1-Sqrt[1-4x])/(2x))^4)(1-Sqrt[1-4x])/(2x), {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
[6*((n^2+1)/((n+2)*(n+3)))*catalan_number(n) for n in (0..30)] # G. C. Greubel, Mar 23 2021
Showing 1-5 of 5 results.
Comments